Latency-Energy Optimized MAC Protocol for Body Sensor Networks

This paper presents a self organized asynchronous medium access control (MAC) protocol for wireless body area sensor (WBASN). The protocol is optimized in terms of latency and energy under variable traffic. A body sensor network (BSN) exhibits a wide range of traffic variations based on different ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alam, M. M., Berder, O., Menard, D., Sentieys, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a self organized asynchronous medium access control (MAC) protocol for wireless body area sensor (WBASN). The protocol is optimized in terms of latency and energy under variable traffic. A body sensor network (BSN) exhibits a wide range of traffic variations based on different physiological data emanating from the monitored patient. For example, electrocardiogram data rate is multiple times more in comparison with body temperature rate. In this context, we exploit the traffic characteristics being observed at each sensor node and propose a novel technique for latency-energy optimization at the MAC layer. The protocol relies on dynamic adaptation of wake-up interval based on a traffic status register bank. The proposed technique allows the wake-up interval to converge to a steady state for variable traffic rates, which results in optimized energy consumption and reduced delay during the communication. A comparison with other energy efficient protocols is presented. The results show that our protocol outperforms the other protocols in terms of energy as well as latency under the variable traffic of WBASN.
ISSN:2376-8886
DOI:10.1109/BSN.2012.8