On the SNR Penalties of Ideal and Non-ideal Subset Diversity Systems

Subset diversity (SSD) techniques, which select and combine the signals from a subset of the available diversity branches, are important for practical wireless systems. This paper characterizes the performance loss, or signal-to-noise ratio (SNR) penalty, of one SSD system with respect to another. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2012-06, Vol.58 (6), p.3708-3724
Hauptverfasser: Gifford, W. M., Conti, A., Chiani, M., Win, M. Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subset diversity (SSD) techniques, which select and combine the signals from a subset of the available diversity branches, are important for practical wireless systems. This paper characterizes the performance loss, or signal-to-noise ratio (SNR) penalty, of one SSD system with respect to another. Both ideal and non-ideal channel estimation are considered, and the analysis is valid for the important case of arbitrary two-dimensional signal constellations. Expressions are given for the asymptotic SNR penalty, for both small and large SNR, for all the comparisons considered. Additionally, we develop bounds and approximations to quantify the performance of one system in terms of another for all SNRs of interest. Furthermore, for some signal constellations, we derive the exact SNR penalty of a non-ideal system with respect to an ideal system, as well as the exact penalty associated with two non-ideal systems with varying degrees of estimation energy. The SNR penalty enables the assessment of system sensitivity to channel estimation energy, combining architecture, and signal constellation.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2011.2178131