Towards a Rule-Level Verification Framework for Property-Preserving Graph Transformations
We report in this paper a method for proving that a graph transformation is property-preserving. Our approach uses a relational representation for graph grammar and a logical representation for graph properties with first-order logic formulas. The presented work consists in identifying the general c...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report in this paper a method for proving that a graph transformation is property-preserving. Our approach uses a relational representation for graph grammar and a logical representation for graph properties with first-order logic formulas. The presented work consists in identifying the general conditions for a graph grammar to preserve graph properties, in particular structural properties. We aim to implement all the relevant notions of graph grammar in the Isabelle/HOL proof assistant in order to allow a (semi) automatic verification of graph transformation with a reasonable complexity. Given an input graph and a set of graph transformation rules, we can use mathematical induction strategies to verify statically if the transformation preserves a particular property of the initial graph. The main highlight of our approach is that such a verification is done without calculating the resulting graph and thus without using a transformation engine. |
---|---|
ISSN: | 2159-4848 2771-3091 |
DOI: | 10.1109/ICST.2012.200 |