Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network
This paper presents an application of the Radial Basis Function Neural Network (RBFNN)-based identification of an essential oil extraction using Non-Linear Autoregressive Model with Exogenous Inputs (NARX) model. The dataset consisted of a Pseudo-Random Binary Sequence (PRBS) inputs as the control s...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an application of the Radial Basis Function Neural Network (RBFNN)-based identification of an essential oil extraction using Non-Linear Autoregressive Model with Exogenous Inputs (NARX) model. The dataset consisted of a Pseudo-Random Binary Sequence (PRBS) inputs as the control signal, and outputs depicting temperatures inside the distillation column. One Step Ahead (OSA) model fitting and residual tests demonstrated that the RBFNN-based NARX model was able to approximate the system well, while satisfying all validation criterias. |
---|---|
DOI: | 10.1109/CSPA.2012.6194779 |