Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network

This paper presents an application of the Radial Basis Function Neural Network (RBFNN)-based identification of an essential oil extraction using Non-Linear Autoregressive Model with Exogenous Inputs (NARX) model. The dataset consisted of a Pseudo-Random Binary Sequence (PRBS) inputs as the control s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yunan, I., Yassin, I. M., Adnan, S. F. S., Rahiman, M. H. F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an application of the Radial Basis Function Neural Network (RBFNN)-based identification of an essential oil extraction using Non-Linear Autoregressive Model with Exogenous Inputs (NARX) model. The dataset consisted of a Pseudo-Random Binary Sequence (PRBS) inputs as the control signal, and outputs depicting temperatures inside the distillation column. One Step Ahead (OSA) model fitting and residual tests demonstrated that the RBFNN-based NARX model was able to approximate the system well, while satisfying all validation criterias.
DOI:10.1109/CSPA.2012.6194779