Compact single hidden layer feedforward network for mycobacterium tuberculosis detection

Advances in imaging technology and artificial intelligence have greatly enhanced the research and development of computer-aided tuberculosis (TB) diagnosis system. The system aims to assist medical technologist and improve the accuracy of clinical diagnosis. A typical architecture of a computer-aide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Osman, M. K., Noor, Mohd Halim Mohd, Mashor, M. Y., Jaafar, H.
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in imaging technology and artificial intelligence have greatly enhanced the research and development of computer-aided tuberculosis (TB) diagnosis system. The system aims to assist medical technologist and improve the accuracy of clinical diagnosis. A typical architecture of a computer-aided TB diagnosis system consists of image processing, feature extraction and classification. Finding an effective classifier for the system has been regarded as a critical topic, in order to improve the detection performance and avoid making false decision. In this study, the recent method called compact single hidden layer feedforward neural network (C-SLFN) trained by an improved Extreme Learning Machine (ELM) is evaluated for detecting the TB bacilli. Six affine moment invariants are extracted from segmented tissue slide images and fed into the C-SLFN. The network is trained and classified the input patterns into three classes: `TB', `overlapped TB' and `non-TB'. Further, the study compares the network performance with a SLFN trained using the standard ELM algorithm. The results obtained from this study suggested that the standard ELM still outperformed the C-SLFN in term of classification accuracy. The standard ELM, however requires a large number of hidden nodes compares to the C-SLFN.
DOI:10.1109/ICCSCE.2011.6190565