Data-driven fault diagnosis in a hybrid electric vehicle regenerative braking system
Regenerative braking is one of the most promising and environmentally friendly technologies used in electric and hybrid electric vehicles to improve energy efficiency and vehicle stability. In this paper, we discuss a systematic data-driven process for detecting and diagnosing faults in the regenera...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sankavaram, Chaitanya Pattipati, B. Pattipati, K. Yilu Zhang Howell, M. Salman, M. |
description | Regenerative braking is one of the most promising and environmentally friendly technologies used in electric and hybrid electric vehicles to improve energy efficiency and vehicle stability. In this paper, we discuss a systematic data-driven process for detecting and diagnosing faults in the regenerative braking system of hybrid electric vehicles. The process involves data reduction techniques, exemplified by multi-way partial least squares, multi-way principal component analysis, for implementation in memory-constrained electronic control units and well-known fault classification techniques based on reduced data, such as support vector machines, k-nearest neighbor, partial least squares, principal component analysis and probabilistic neural network, to isolate faults in the braking system. The results demonstrate that highly accurate fault diagnosis is possible with the pattern recognition-based techniques. The process can be employed for fault analysis in a wide variety of systems, ranging from automobiles to buildings to aerospace systems. |
doi_str_mv | 10.1109/AERO.2012.6187368 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6187368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6187368</ieee_id><sourcerecordid>6187368</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6497dcd394c540b869c524311ca5a29fe304850ca3c67e05ae33ac6bf6e445863</originalsourceid><addsrcrecordid>eNpFkMtKw0AYhccbWGsfQNzMC6TO_bIstV6gUJAK7sqfyZ90NI0yEwt9-wYseDbf4vCdxSHkjrMp58w_zBZvq6lgXEwNd1Yad0ZuuNLWMq21Pycj4b0phNTu4r8w9pKMBlsXUsiPazLJ-ZMNsUxY7kZk_Qg9FFWKe-xoDb9tT6sITfedY6axo0C3hzLFimKLoU8x0D1uY2iRJmywwwT9oNIywVfsGpoPucfdLbmqoc04OXFM3p8W6_lLsVw9v85nyyJyq_vCKG-rUEmvglasdMYHLZTkPIAG4WuUTDnNAshgLDINKCUEU9YGldLOyDG5_9uNiLj5SXEH6bA5vSOP4JxU_w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data-driven fault diagnosis in a hybrid electric vehicle regenerative braking system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sankavaram, Chaitanya ; Pattipati, B. ; Pattipati, K. ; Yilu Zhang ; Howell, M. ; Salman, M.</creator><creatorcontrib>Sankavaram, Chaitanya ; Pattipati, B. ; Pattipati, K. ; Yilu Zhang ; Howell, M. ; Salman, M.</creatorcontrib><description>Regenerative braking is one of the most promising and environmentally friendly technologies used in electric and hybrid electric vehicles to improve energy efficiency and vehicle stability. In this paper, we discuss a systematic data-driven process for detecting and diagnosing faults in the regenerative braking system of hybrid electric vehicles. The process involves data reduction techniques, exemplified by multi-way partial least squares, multi-way principal component analysis, for implementation in memory-constrained electronic control units and well-known fault classification techniques based on reduced data, such as support vector machines, k-nearest neighbor, partial least squares, principal component analysis and probabilistic neural network, to isolate faults in the braking system. The results demonstrate that highly accurate fault diagnosis is possible with the pattern recognition-based techniques. The process can be employed for fault analysis in a wide variety of systems, ranging from automobiles to buildings to aerospace systems.</description><identifier>ISSN: 1095-323X</identifier><identifier>ISBN: 1457705567</identifier><identifier>ISBN: 9781457705564</identifier><identifier>EISSN: 2996-2358</identifier><identifier>EISBN: 1457705559</identifier><identifier>EISBN: 9781457705571</identifier><identifier>EISBN: 9781457705557</identifier><identifier>EISBN: 1457705575</identifier><identifier>DOI: 10.1109/AERO.2012.6187368</identifier><language>eng</language><publisher>IEEE</publisher><subject>Engines ; Mathematical model ; Mechanical power transmission ; Monitoring ; Torque ; Vehicles ; Wheels</subject><ispartof>2012 IEEE Aerospace Conference, 2012, p.1-11</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6187368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6187368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sankavaram, Chaitanya</creatorcontrib><creatorcontrib>Pattipati, B.</creatorcontrib><creatorcontrib>Pattipati, K.</creatorcontrib><creatorcontrib>Yilu Zhang</creatorcontrib><creatorcontrib>Howell, M.</creatorcontrib><creatorcontrib>Salman, M.</creatorcontrib><title>Data-driven fault diagnosis in a hybrid electric vehicle regenerative braking system</title><title>2012 IEEE Aerospace Conference</title><addtitle>AERO</addtitle><description>Regenerative braking is one of the most promising and environmentally friendly technologies used in electric and hybrid electric vehicles to improve energy efficiency and vehicle stability. In this paper, we discuss a systematic data-driven process for detecting and diagnosing faults in the regenerative braking system of hybrid electric vehicles. The process involves data reduction techniques, exemplified by multi-way partial least squares, multi-way principal component analysis, for implementation in memory-constrained electronic control units and well-known fault classification techniques based on reduced data, such as support vector machines, k-nearest neighbor, partial least squares, principal component analysis and probabilistic neural network, to isolate faults in the braking system. The results demonstrate that highly accurate fault diagnosis is possible with the pattern recognition-based techniques. The process can be employed for fault analysis in a wide variety of systems, ranging from automobiles to buildings to aerospace systems.</description><subject>Engines</subject><subject>Mathematical model</subject><subject>Mechanical power transmission</subject><subject>Monitoring</subject><subject>Torque</subject><subject>Vehicles</subject><subject>Wheels</subject><issn>1095-323X</issn><issn>2996-2358</issn><isbn>1457705567</isbn><isbn>9781457705564</isbn><isbn>1457705559</isbn><isbn>9781457705571</isbn><isbn>9781457705557</isbn><isbn>1457705575</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtKw0AYhccbWGsfQNzMC6TO_bIstV6gUJAK7sqfyZ90NI0yEwt9-wYseDbf4vCdxSHkjrMp58w_zBZvq6lgXEwNd1Yad0ZuuNLWMq21Pycj4b0phNTu4r8w9pKMBlsXUsiPazLJ-ZMNsUxY7kZk_Qg9FFWKe-xoDb9tT6sITfedY6axo0C3hzLFimKLoU8x0D1uY2iRJmywwwT9oNIywVfsGpoPucfdLbmqoc04OXFM3p8W6_lLsVw9v85nyyJyq_vCKG-rUEmvglasdMYHLZTkPIAG4WuUTDnNAshgLDINKCUEU9YGldLOyDG5_9uNiLj5SXEH6bA5vSOP4JxU_w</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Sankavaram, Chaitanya</creator><creator>Pattipati, B.</creator><creator>Pattipati, K.</creator><creator>Yilu Zhang</creator><creator>Howell, M.</creator><creator>Salman, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Data-driven fault diagnosis in a hybrid electric vehicle regenerative braking system</title><author>Sankavaram, Chaitanya ; Pattipati, B. ; Pattipati, K. ; Yilu Zhang ; Howell, M. ; Salman, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6497dcd394c540b869c524311ca5a29fe304850ca3c67e05ae33ac6bf6e445863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Engines</topic><topic>Mathematical model</topic><topic>Mechanical power transmission</topic><topic>Monitoring</topic><topic>Torque</topic><topic>Vehicles</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Sankavaram, Chaitanya</creatorcontrib><creatorcontrib>Pattipati, B.</creatorcontrib><creatorcontrib>Pattipati, K.</creatorcontrib><creatorcontrib>Yilu Zhang</creatorcontrib><creatorcontrib>Howell, M.</creatorcontrib><creatorcontrib>Salman, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sankavaram, Chaitanya</au><au>Pattipati, B.</au><au>Pattipati, K.</au><au>Yilu Zhang</au><au>Howell, M.</au><au>Salman, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data-driven fault diagnosis in a hybrid electric vehicle regenerative braking system</atitle><btitle>2012 IEEE Aerospace Conference</btitle><stitle>AERO</stitle><date>2012-03</date><risdate>2012</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1095-323X</issn><eissn>2996-2358</eissn><isbn>1457705567</isbn><isbn>9781457705564</isbn><eisbn>1457705559</eisbn><eisbn>9781457705571</eisbn><eisbn>9781457705557</eisbn><eisbn>1457705575</eisbn><abstract>Regenerative braking is one of the most promising and environmentally friendly technologies used in electric and hybrid electric vehicles to improve energy efficiency and vehicle stability. In this paper, we discuss a systematic data-driven process for detecting and diagnosing faults in the regenerative braking system of hybrid electric vehicles. The process involves data reduction techniques, exemplified by multi-way partial least squares, multi-way principal component analysis, for implementation in memory-constrained electronic control units and well-known fault classification techniques based on reduced data, such as support vector machines, k-nearest neighbor, partial least squares, principal component analysis and probabilistic neural network, to isolate faults in the braking system. The results demonstrate that highly accurate fault diagnosis is possible with the pattern recognition-based techniques. The process can be employed for fault analysis in a wide variety of systems, ranging from automobiles to buildings to aerospace systems.</abstract><pub>IEEE</pub><doi>10.1109/AERO.2012.6187368</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1095-323X |
ispartof | 2012 IEEE Aerospace Conference, 2012, p.1-11 |
issn | 1095-323X 2996-2358 |
language | eng |
recordid | cdi_ieee_primary_6187368 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Engines Mathematical model Mechanical power transmission Monitoring Torque Vehicles Wheels |
title | Data-driven fault diagnosis in a hybrid electric vehicle regenerative braking system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data-driven%20fault%20diagnosis%20in%20a%20hybrid%20electric%20vehicle%20regenerative%20braking%20system&rft.btitle=2012%20IEEE%20Aerospace%20Conference&rft.au=Sankavaram,%20Chaitanya&rft.date=2012-03&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1095-323X&rft.eissn=2996-2358&rft.isbn=1457705567&rft.isbn_list=9781457705564&rft_id=info:doi/10.1109/AERO.2012.6187368&rft_dat=%3Cieee_6IE%3E6187368%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705559&rft.eisbn_list=9781457705571&rft.eisbn_list=9781457705557&rft.eisbn_list=1457705575&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6187368&rfr_iscdi=true |