Data-driven fault diagnosis in a hybrid electric vehicle regenerative braking system
Regenerative braking is one of the most promising and environmentally friendly technologies used in electric and hybrid electric vehicles to improve energy efficiency and vehicle stability. In this paper, we discuss a systematic data-driven process for detecting and diagnosing faults in the regenera...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Regenerative braking is one of the most promising and environmentally friendly technologies used in electric and hybrid electric vehicles to improve energy efficiency and vehicle stability. In this paper, we discuss a systematic data-driven process for detecting and diagnosing faults in the regenerative braking system of hybrid electric vehicles. The process involves data reduction techniques, exemplified by multi-way partial least squares, multi-way principal component analysis, for implementation in memory-constrained electronic control units and well-known fault classification techniques based on reduced data, such as support vector machines, k-nearest neighbor, partial least squares, principal component analysis and probabilistic neural network, to isolate faults in the braking system. The results demonstrate that highly accurate fault diagnosis is possible with the pattern recognition-based techniques. The process can be employed for fault analysis in a wide variety of systems, ranging from automobiles to buildings to aerospace systems. |
---|---|
ISSN: | 1095-323X 2996-2358 |
DOI: | 10.1109/AERO.2012.6187368 |