Constraint-based haptic rendering of point data for teleoperated robot grasping

We present an efficient 6-DOF haptic algorithm for rendering interaction forces between a rigid proxy object and a set of unordered point data. We further explore the use of haptic feedback for remotely supervised robots performing grasping tasks. The robot captures the geometry of a remote environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leeper, A., Chan, S., Kaijen Hsiao, Ciocarlie, M., Salisbury, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an efficient 6-DOF haptic algorithm for rendering interaction forces between a rigid proxy object and a set of unordered point data. We further explore the use of haptic feedback for remotely supervised robots performing grasping tasks. The robot captures the geometry of a remote environment (as a cloud of 3D points) at run-time using a depth camera or laser scanner. An operator then uses a haptic device to position a virtual model of the robot gripper (the haptic proxy), specifying a desired grasp pose to be executed by the robot. The haptic algorithm enforces a proxy pose that is non-colliding with the observable environment, and provides both force and torque feedback to the operator. Once the operator confirms the desired gripper pose, the robot computes a collision-free arm trajectory and executes the specified grasp. We apply this method for grasping a wide range of objects, previously unseen by the robot, from highly cluttered scenes typical of human environments. Our user experiment (N=20) shows that people with no prior experience using the visualization system on which our interfaces are based are able to successfully grasp more objects with a haptic device providing force-feedback than with just a mouse.
ISSN:2324-7347
2324-7355
DOI:10.1109/HAPTIC.2012.6183818