Amplitude and Phase Drift Correction of EFPI Sensor Systems Using Both Adaptive Kalman Filter and Temperature Compensation for Nanometric Displacement Estimation

Nanometric displacement measurements by Extrinsic Fiber Fabry-Perot interferometers (EFPI) is extremely susceptible to external environmental changes. Temperature, in particular, has a remarkable influence on the optical power and wavelength of the laser diode in use, in addition to the thermal expa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2012-07, Vol.30 (13), p.2195-2202
Hauptverfasser: Chawah, P., Sourice, A., Plantier, G., Seat, H. C., Boudin, F., Chery, J., Cattoen, M., Bernard, P., Brunet, C., Gaffet, S., Boyer, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanometric displacement measurements by Extrinsic Fiber Fabry-Perot interferometers (EFPI) is extremely susceptible to external environmental changes. Temperature, in particular, has a remarkable influence on the optical power and wavelength of the laser diode in use, in addition to the thermal expansion of the mechanical structure. In this paper we propose an optimization of the EFPI sensor in order to use it for very long-term (more than one year) and for high-precision displacement measurements. For this purpose, a real time and adaptive estimation procedure based on a homodyne technique and a Kalman filter is established. During a sinusoidal laser diode current modulation, the Kalman filter provides a correction of the amplitude drift caused by the resultant optical power modulation and external perturbations. Besides, stationary temperature transfer operators are estimated via experimental measurements to reduce the additive thermal noise induced in the optical phase and mechanical components.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2012.2194476