13% Power reduction in 16b integer unit in 40nm CMOS by adaptive power supply voltage control with parity-based error prediction and detection (PEPD) and fully integrated digital LDO
Scaling power supply voltages (V DD 's) of logic circuits down to the sub/near-threshold region is a promising approach to achieve significant power reductions. Circuit delays in the ultra-low voltage region, however, are extremely sensitive to process, voltage, and temperature (PVT) variations...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scaling power supply voltages (V DD 's) of logic circuits down to the sub/near-threshold region is a promising approach to achieve significant power reductions. Circuit delays in the ultra-low voltage region, however, are extremely sensitive to process, voltage, and temperature (PVT) variations, and hence, large timing margins are required for worst-case design. Since such large timing margins reduce the energy efficiency benefits of lower V DD , adaptive V DD control to cope with PVT variations is indispensable for ultra-low voltage circuits. In this paper, an adaptive V DD control system with parity-based error prediction and detection (PEPD) and 0.5-V input fully-integrated digital LDO (DLDO) is proposed. |
---|---|
ISSN: | 0193-6530 2376-8606 |
DOI: | 10.1109/ISSCC.2012.6177102 |