A 1V 5mA multimode IEEE 802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry applications

In recent years there has been significant interest and growth in low-power wireless technologies beyond traditional consumer use cases into medical applications [1]. Previously a bastion for application specific wireless propriety protocols, the WBAN community has worked together to develop a commu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wong, A., Dawkins, M., Devita, G., Kasparidis, N., Katsiamis, A., King, O., Lauria, F., Schiff, J., Burdett, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years there has been significant interest and growth in low-power wireless technologies beyond traditional consumer use cases into medical applications [1]. Previously a bastion for application specific wireless propriety protocols, the WBAN community has worked together to develop a communication standard IEEE802.15.6 optimised for low power devices in and around the human body offering the levels of QoS required for personal medical data. Additionally, the consumer electronic industry has migrated existing standardised wireless protocols such as Bluetooth to meet the demanding low energy yet robust needs of WBAN. This paper presents a transceiver chip for both IEEE802.15.6 Narrow-Band (NB) PHY draft [2] and Bluetooth Low Energy (LE) 4.0 standards as well as proprietary protocols. Multi-mode operation offers the best solution in terms of flexibility and interoperability between devices and networks, and the appropriate protocol can be chosen to optimise power consumption in numerous applications scenarios where data throughput varies dramatically; such as streaming multi-lead ECG or episodic temperature measurements. The chip operates in the 2.36GHz MBANs spectrum, specifically allocated for medical devices, and the worldwide 2.4GHz ISM band. A TX for the 780/868/915/950MHz licence-free bands in China, EU, North America and Japan respectively, is also included. The chip is architected and designed for 5mW peak active power dissipation for compatibility with 1V button cells, hence enabling small-form factor non-intrusive body worn applications.
ISSN:0193-6530
2376-8606
DOI:10.1109/ISSCC.2012.6177022