Thermal conductivity manipulation in single crystal silicon via lithographycally defined phononic crystals
The thermal conductivity of single crystal silicon was engineered to be as low as 32.6W/mK using lithographically defined phononic crystals (PnCs), which is only one quarter of bulk silicon thermal conductivity [1]. Specifically sub-micron through-holes were periodically patterned in 500nm-thick sil...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The thermal conductivity of single crystal silicon was engineered to be as low as 32.6W/mK using lithographically defined phononic crystals (PnCs), which is only one quarter of bulk silicon thermal conductivity [1]. Specifically sub-micron through-holes were periodically patterned in 500nm-thick silicon layers effectively enhancing both coherent and incoherent phonon scattering and resulting in as large as a 37% reduction in thermal conductivity beyond the contributions of the thin-film and volume reduction effects. The demonstrated method uses conventional lithography-based technologies that are directly applicable to diverse micro/nano-scale devices, leading to potential performance improvements where heat management is important. |
---|---|
ISSN: | 1084-6999 |
DOI: | 10.1109/MEMSYS.2012.6170122 |