A scalable, flexible workflow for MethylCap-seq data analysis

Advances in whole genome profiling have revolutionized the cancer research field, but at the same time have raised new bioinformatics challenges. For next generation sequencing (NGS), these include data storage, computational costs, sequence processing and alignment, delineating appropriate statisti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS) 2011-01, p.1-4
Hauptverfasser: Rodriguez, B., Hok-Hei Tam, Frankhouser, D., Trimarchi, M., Murphy, M., Kuo, C., Parikh, D., Ball, B., Schwind, S., Curfman, J., Blum, W., Marcucci, G., Yan, P., Bundschuh, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in whole genome profiling have revolutionized the cancer research field, but at the same time have raised new bioinformatics challenges. For next generation sequencing (NGS), these include data storage, computational costs, sequence processing and alignment, delineating appropriate statistical measures, and data visualization. The NGS application MethylCap-seq involves the in vitro capture of methylated DNA and subsequent analysis of enriched fragments by massively parallel sequencing. Here, we present a scalable, flexible workflow for MethylCap-seq Quality Control, secondary data analysis, tertiary analysis of multiple experimental groups, and data visualization. This workflow and its suite of features will assist biologists in conducting methylation profiling projects and facilitate meaningful biological interpretation.
ISSN:2150-3001
2150-301X
DOI:10.1109/GENSiPS.2011.6169426