Associative memory design via perceptron learning

In the present paper, a new synthesis approach is developed for associative memories based on the perceptron learning algorithm. The design (synthesis) problem of feedback neural networks for associative memories is formulated as a set of linear inequalities such that the use of perceptron learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Derong Liu, Zanjun Lu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, a new synthesis approach is developed for associative memories based on the perceptron learning algorithm. The design (synthesis) problem of feedback neural networks for associative memories is formulated as a set of linear inequalities such that the use of perceptron learning is evident. The perceptron learning in the synthesis algorithms is guaranteed to converge. To demonstrate the applicability of the present results, a specific example is considered.
DOI:10.1109/ICNN.1997.616198