Identification of nonlinear systems with stable oscillations

We propose a convex optimization procedure for identification of nonlinear systems that exhibit stable limit cycles. It extends the "robust identification error" framework in which a convex upper bound on simulation error is optimized to fit rational polynomial models with a strong stabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Manchester, I. R., Tobenkin, M. M., Wang, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a convex optimization procedure for identification of nonlinear systems that exhibit stable limit cycles. It extends the "robust identification error" framework in which a convex upper bound on simulation error is optimized to fit rational polynomial models with a strong stability guarantee. In this work, we relax the stability constraint using the concepts of transverse dynamics and orbital stability, thus allowing systems with autonomous oscillations to be identified. The resulting optimization problem is convex. The method is illustrated by identifying a high-fidelity model from experimental recordings of a live rat hippocampal neuron in culture.
ISSN:0191-2216
DOI:10.1109/CDC.2011.6161206