Inverse optimal trajectory tracking for discrete time nonlinear positive systems

In this paper, discrete time inverse optimal trajectory tracking for a class of non-linear positive systems is proposed. The scheme is developed for MIMO (multi-input, multi-output) affine systems. This approach is adapted for glycemic control of type 1 diabetes mellitus (T1DM) patients. The control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leon, B. S., Alanis, A. Y., Sanchez, E. N., Ornelas, F., Ruiz-Velazquez, E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, discrete time inverse optimal trajectory tracking for a class of non-linear positive systems is proposed. The scheme is developed for MIMO (multi-input, multi-output) affine systems. This approach is adapted for glycemic control of type 1 diabetes mellitus (T1DM) patients. The control law calculates the insulin delivery rate in order to prevent hyperglycemia levels. A neural model is obtained from an on-line neural identifier, which uses a recurrent neural network, trained with the extended Kalman filter (EKF); this neural model has an affine form, which permits the applicability of inverse optimal control scheme. The proposed algorithm is tuned to follow a desired trajectory; this trajectory reproduces the glucose absorption of a healthy person. Simulation results illustrate the applicability of the control law in biological processes.
ISSN:0191-2216
DOI:10.1109/CDC.2011.6160351