On the Design of Constraint Covariance Matrix Self-Adaptation Evolution Strategies Including a Cardinality Constraint

This paper describes the algorithm's engineering of a covariance matrix self-adaptation evolution strategy (CMSA-ES) for solving a mixed linear/nonlinear constrained optimization problem arising in portfolio optimization. While the feasible solution space is defined by the (probabilistic) simpl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2012-08, Vol.16 (4), p.578-596
Hauptverfasser: Beyer, H-G, Finck, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the algorithm's engineering of a covariance matrix self-adaptation evolution strategy (CMSA-ES) for solving a mixed linear/nonlinear constrained optimization problem arising in portfolio optimization. While the feasible solution space is defined by the (probabilistic) simplex, the nonlinearity comes in by a cardinality constraint bounding the number of linear inequalities violated. This gives rise to a nonconvex optimization problem. The design is based on the CMSA-ES and relies on three specific techniques to fulfill the different constraints. The resulting algorithm is then thoroughly tested on a data set derived from time series data of the Dow Jones Index.
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2011.2169967