On the Design of Constraint Covariance Matrix Self-Adaptation Evolution Strategies Including a Cardinality Constraint
This paper describes the algorithm's engineering of a covariance matrix self-adaptation evolution strategy (CMSA-ES) for solving a mixed linear/nonlinear constrained optimization problem arising in portfolio optimization. While the feasible solution space is defined by the (probabilistic) simpl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2012-08, Vol.16 (4), p.578-596 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the algorithm's engineering of a covariance matrix self-adaptation evolution strategy (CMSA-ES) for solving a mixed linear/nonlinear constrained optimization problem arising in portfolio optimization. While the feasible solution space is defined by the (probabilistic) simplex, the nonlinearity comes in by a cardinality constraint bounding the number of linear inequalities violated. This gives rise to a nonconvex optimization problem. The design is based on the CMSA-ES and relies on three specific techniques to fulfill the different constraints. The resulting algorithm is then thoroughly tested on a data set derived from time series data of the Dow Jones Index. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/TEVC.2011.2169967 |