A New Control Method for dc-dc Converter by Neural Network Predictor with Repetitive Training

This paper proposes a novel prediction based digital control dc-dc converter. In this method, a neural network control is adopted to improve the transient response in coordination with a conventional P-I-D control. The prediction based control term is consists of predicted data which are obtained fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kurokawa, F., Ueno, K., Maruta, H., Osuga, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel prediction based digital control dc-dc converter. In this method, a neural network control is adopted to improve the transient response in coordination with a conventional P-I-D control. The prediction based control term is consists of predicted data which are obtained from repetitive training of the neural network. This works to improve the transient response very effectively when the load is changed quickly. As a result, the undershoot of the output voltage and the overshoot of the reactor current are suppressed effectively as compared with the conventional one in the step change of load resistance. The proposed method is based on the neural network learning, it is expected that the proposed approach has high availability in providing the easy way for the design of circuit system since there is no need to change the algorithm. The adequate availability of the proposed method is also confirmed by the experiment in which P-I-D control parameters of the circuit are set to non-optimal ones and the proposed method is used in the same manner.
DOI:10.1109/ICMLA.2011.17