Non-Linear Semantic Embedding for Organizing Large Instrument Sample Libraries

Though tags and metadata may provide rich indicators of relationships between high-level concepts like songs, artists or even genres, verbal descriptors lack the fine-grained detail necessary to capture acoustic nuances necessary for efficient retrieval of sounds in extremely large sample libraries....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Humphrey, E. J., Glennon, A. P., Bello, J. P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue
container_start_page 142
container_title
container_volume 2
creator Humphrey, E. J.
Glennon, A. P.
Bello, J. P.
description Though tags and metadata may provide rich indicators of relationships between high-level concepts like songs, artists or even genres, verbal descriptors lack the fine-grained detail necessary to capture acoustic nuances necessary for efficient retrieval of sounds in extremely large sample libraries. To these ends, we present a flexible approach titled Non-linear Semantic Embedding (NLSE), capable of projecting high-dimensional time-frequency representations of musical instrument samples into a low-dimensional, semantically-organized metric space. As opposed to other dimensionality reduction techniques, NLSE incorporates extrinsic semantic information in learning a projection, automatically learns salient acoustic features, and generates an intuitively meaningful output space.
doi_str_mv 10.1109/ICMLA.2011.105
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6147663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6147663</ieee_id><sourcerecordid>6147663</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3e71ed81bf4c3e8fd4597c8ce1e3916b6ead4e5a4bda56557c8d92f21fbe07d23</originalsourceid><addsrcrecordid>eNotjL1OwzAURo0QElCysrD4BVJ8_RuPVVQgkmmHdq-c-CYyatzKCQM8PUXwLUdHR_oIeQS2BGD2uanf3WrJGcASmLoi98xoq6Rmhl-TwpoKpDKGg5D8lhTT9MEu09paMHdkszml0sWEPtMdjj7NsaPrscUQYhpof8p0mwef4vevOp8HpE2a5vw5Yprpzo_nI1IX2-xzxOmB3PT-OGHxzwXZv6z39Vvptq9NvXJltGwuBRrAUEHby05g1QeprOmqDgGFBd1q9EGi8rINXmmlLi1Y3nPoW2QmcLEgT3-3EREP5xxHn78OGqTRWogfwtlPeA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-Linear Semantic Embedding for Organizing Large Instrument Sample Libraries</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Humphrey, E. J. ; Glennon, A. P. ; Bello, J. P.</creator><creatorcontrib>Humphrey, E. J. ; Glennon, A. P. ; Bello, J. P.</creatorcontrib><description>Though tags and metadata may provide rich indicators of relationships between high-level concepts like songs, artists or even genres, verbal descriptors lack the fine-grained detail necessary to capture acoustic nuances necessary for efficient retrieval of sounds in extremely large sample libraries. To these ends, we present a flexible approach titled Non-linear Semantic Embedding (NLSE), capable of projecting high-dimensional time-frequency representations of musical instrument samples into a low-dimensional, semantically-organized metric space. As opposed to other dimensionality reduction techniques, NLSE incorporates extrinsic semantic information in learning a projection, automatically learns salient acoustic features, and generates an intuitively meaningful output space.</description><identifier>ISBN: 9781457721342</identifier><identifier>ISBN: 1457721341</identifier><identifier>EISBN: 0769546072</identifier><identifier>EISBN: 9780769546070</identifier><identifier>DOI: 10.1109/ICMLA.2011.105</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace electronics ; Convolution ; Instruments ; Organizations ; Principal component analysis ; Semantics ; Training</subject><ispartof>2011 10th International Conference on Machine Learning and Applications and Workshops, 2011, Vol.2, p.142-147</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6147663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6147663$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Humphrey, E. J.</creatorcontrib><creatorcontrib>Glennon, A. P.</creatorcontrib><creatorcontrib>Bello, J. P.</creatorcontrib><title>Non-Linear Semantic Embedding for Organizing Large Instrument Sample Libraries</title><title>2011 10th International Conference on Machine Learning and Applications and Workshops</title><addtitle>icmla</addtitle><description>Though tags and metadata may provide rich indicators of relationships between high-level concepts like songs, artists or even genres, verbal descriptors lack the fine-grained detail necessary to capture acoustic nuances necessary for efficient retrieval of sounds in extremely large sample libraries. To these ends, we present a flexible approach titled Non-linear Semantic Embedding (NLSE), capable of projecting high-dimensional time-frequency representations of musical instrument samples into a low-dimensional, semantically-organized metric space. As opposed to other dimensionality reduction techniques, NLSE incorporates extrinsic semantic information in learning a projection, automatically learns salient acoustic features, and generates an intuitively meaningful output space.</description><subject>Aerospace electronics</subject><subject>Convolution</subject><subject>Instruments</subject><subject>Organizations</subject><subject>Principal component analysis</subject><subject>Semantics</subject><subject>Training</subject><isbn>9781457721342</isbn><isbn>1457721341</isbn><isbn>0769546072</isbn><isbn>9780769546070</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjL1OwzAURo0QElCysrD4BVJ8_RuPVVQgkmmHdq-c-CYyatzKCQM8PUXwLUdHR_oIeQS2BGD2uanf3WrJGcASmLoi98xoq6Rmhl-TwpoKpDKGg5D8lhTT9MEu09paMHdkszml0sWEPtMdjj7NsaPrscUQYhpof8p0mwef4vevOp8HpE2a5vw5Yprpzo_nI1IX2-xzxOmB3PT-OGHxzwXZv6z39Vvptq9NvXJltGwuBRrAUEHby05g1QeprOmqDgGFBd1q9EGi8rINXmmlLi1Y3nPoW2QmcLEgT3-3EREP5xxHn78OGqTRWogfwtlPeA</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Humphrey, E. J.</creator><creator>Glennon, A. P.</creator><creator>Bello, J. P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Non-Linear Semantic Embedding for Organizing Large Instrument Sample Libraries</title><author>Humphrey, E. J. ; Glennon, A. P. ; Bello, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3e71ed81bf4c3e8fd4597c8ce1e3916b6ead4e5a4bda56557c8d92f21fbe07d23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aerospace electronics</topic><topic>Convolution</topic><topic>Instruments</topic><topic>Organizations</topic><topic>Principal component analysis</topic><topic>Semantics</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Humphrey, E. J.</creatorcontrib><creatorcontrib>Glennon, A. P.</creatorcontrib><creatorcontrib>Bello, J. P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Humphrey, E. J.</au><au>Glennon, A. P.</au><au>Bello, J. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-Linear Semantic Embedding for Organizing Large Instrument Sample Libraries</atitle><btitle>2011 10th International Conference on Machine Learning and Applications and Workshops</btitle><stitle>icmla</stitle><date>2011-12</date><risdate>2011</risdate><volume>2</volume><spage>142</spage><epage>147</epage><pages>142-147</pages><isbn>9781457721342</isbn><isbn>1457721341</isbn><eisbn>0769546072</eisbn><eisbn>9780769546070</eisbn><abstract>Though tags and metadata may provide rich indicators of relationships between high-level concepts like songs, artists or even genres, verbal descriptors lack the fine-grained detail necessary to capture acoustic nuances necessary for efficient retrieval of sounds in extremely large sample libraries. To these ends, we present a flexible approach titled Non-linear Semantic Embedding (NLSE), capable of projecting high-dimensional time-frequency representations of musical instrument samples into a low-dimensional, semantically-organized metric space. As opposed to other dimensionality reduction techniques, NLSE incorporates extrinsic semantic information in learning a projection, automatically learns salient acoustic features, and generates an intuitively meaningful output space.</abstract><pub>IEEE</pub><doi>10.1109/ICMLA.2011.105</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457721342
ispartof 2011 10th International Conference on Machine Learning and Applications and Workshops, 2011, Vol.2, p.142-147
issn
language eng
recordid cdi_ieee_primary_6147663
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerospace electronics
Convolution
Instruments
Organizations
Principal component analysis
Semantics
Training
title Non-Linear Semantic Embedding for Organizing Large Instrument Sample Libraries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-Linear%20Semantic%20Embedding%20for%20Organizing%20Large%20Instrument%20Sample%20Libraries&rft.btitle=2011%2010th%20International%20Conference%20on%20Machine%20Learning%20and%20Applications%20and%20Workshops&rft.au=Humphrey,%20E.%20J.&rft.date=2011-12&rft.volume=2&rft.spage=142&rft.epage=147&rft.pages=142-147&rft.isbn=9781457721342&rft.isbn_list=1457721341&rft_id=info:doi/10.1109/ICMLA.2011.105&rft_dat=%3Cieee_6IE%3E6147663%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769546072&rft.eisbn_list=9780769546070&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6147663&rfr_iscdi=true