Non-Linear Semantic Embedding for Organizing Large Instrument Sample Libraries

Though tags and metadata may provide rich indicators of relationships between high-level concepts like songs, artists or even genres, verbal descriptors lack the fine-grained detail necessary to capture acoustic nuances necessary for efficient retrieval of sounds in extremely large sample libraries....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Humphrey, E. J., Glennon, A. P., Bello, J. P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Though tags and metadata may provide rich indicators of relationships between high-level concepts like songs, artists or even genres, verbal descriptors lack the fine-grained detail necessary to capture acoustic nuances necessary for efficient retrieval of sounds in extremely large sample libraries. To these ends, we present a flexible approach titled Non-linear Semantic Embedding (NLSE), capable of projecting high-dimensional time-frequency representations of musical instrument samples into a low-dimensional, semantically-organized metric space. As opposed to other dimensionality reduction techniques, NLSE incorporates extrinsic semantic information in learning a projection, automatically learns salient acoustic features, and generates an intuitively meaningful output space.
DOI:10.1109/ICMLA.2011.105