Investigations on Bent and Negabent Functions via the Nega-Hadamard Transform

Parker considered a new type of discrete Fourier transform, called nega-Hadamard transform. We prove several results regarding its behavior on combinations of Boolean functions and use this theory to derive several results on negabentness (that is, flat nega-spectrum) of concatenations, and partiall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2012-06, Vol.58 (6), p.4064-4072
Hauptverfasser: Stanica, P., Gangopadhyay, S., Chaturvedi, A., Gangopadhyay, A. K., Maitra, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parker considered a new type of discrete Fourier transform, called nega-Hadamard transform. We prove several results regarding its behavior on combinations of Boolean functions and use this theory to derive several results on negabentness (that is, flat nega-spectrum) of concatenations, and partially symmetric functions. We derive the upper bound ⌈n/2⌉ for the algebraic degree of a negabent function on n variables. Further, a characterization of bent-negabent functions is obtained within a subclass of the Maiorana-McFarland set. We develop a technique to construct bent-negabent Boolean functions by using complete mapping polynomials. Using this technique, we demonstrate that for each ℓ ≥ 2, there exist bent-negabent functions on n = 12 ℓ variables with algebraic degree n /4 + 1 = 3 ℓ + 1. It is also demonstrated that there exist bent-negabent functions on eight variables with algebraic degrees 2, 3, and 4. Simple proofs of several previously known facts are obtained as immediate consequences of our work.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2012.2186785