Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments
This paper focuses on the problem of multilevel digital signal estimation in the presence of generic noise in a communication system. Noise is assumed unimodal, independent identically distributed, generically non Gaussian, that is eventually asymmetric, impulsive or not. The proposed solution is ba...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on the problem of multilevel digital signal estimation in the presence of generic noise in a communication system. Noise is assumed unimodal, independent identically distributed, generically non Gaussian, that is eventually asymmetric, impulsive or not. The proposed solution is based on a previously developed estimator which requires the analytical probability density function model of the noise. The selected estimator was originally applied under the assumption of S/spl alpha/S noise distribution. In this paper the asymmetric generalized Gaussian (agg) model is selected as a suitable model to describe the noise processes: hence, it is discussed and compared with the S/spl alpha/S distributions in terms of decoding performances. Tests were performed on simulated binary sequences corrupted by interference generated as S/spl alpha/S processes. Test results outlines comparable performances of the two families of parametric noise models. |
---|---|
DOI: | 10.1109/HOST.1997.613527 |