Effects of oblique wave propagation on the nonlinear plasma resonance in the two-dimensional channel of the Dyakonov-Shur detector

The conduction channel of a semiconductor heterostructure high electron mobility transistor (HEMT) can act as a plasma wave resonator for density oscillations in quasi-two-dimensional (2D) electron gas. The plasma wave is an electron density excitation, possible at frequencies significantly higher t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rupper, G., Rudin, S., Crowne, F. J.
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conduction channel of a semiconductor heterostructure high electron mobility transistor (HEMT) can act as a plasma wave resonator for density oscillations in quasi-two-dimensional (2D) electron gas. The plasma wave is an electron density excitation, possible at frequencies significantly higher than the cut-off frequency in a short channel device. The hydrodynamic model predicts a resonance response to electromagnetic radiation at the plasma oscillation frequency, which can be used for detection, mixing, and frequency multiplication in the terahertz range [1]. In particular, the hydrodynamic nonlinearities produce a constant source-to-drain voltage when gate-to-channel voltage has a time-harmonic component. In the Dyakonov-Shur detector a short channel HEMT is used for the resonant tunable detection of terahertz radiation. The non-linear plasma response has been observed in InGaAs [2,3] and GaN [4-6] HEMTs, in the frequency range from 0.2 to 2.5 THz.
DOI:10.1109/ISDRS.2011.6135189