Memory-Efficient Computation of Persistent Homology for 3D Images Using Discrete Morse Theory

We propose a memory-efficient method that computes persistent homology for 3D gray-scale images. The basic idea is to compute the persistence of the induced Morse-Smale complex. Since in practice this complex is much smaller than the input data, significantly less memory is required for the subseque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gunther, D., Reininghaus, J., Hotz, I., Wagner, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a memory-efficient method that computes persistent homology for 3D gray-scale images. The basic idea is to compute the persistence of the induced Morse-Smale complex. Since in practice this complex is much smaller than the input data, significantly less memory is required for the subsequent computations. We propose a novel algorithm that efficiently extracts the Morse-Smale complex based on algorithms from discrete Morse theory. The proposed algorithm is thereby optimal with a computational complexity of O(n2). The persistence is then computed using the Morse-Smale complex by applying an existing algorithm with a good practical running time. We demonstrate that our method allows for the computation of persistent homology for large data on commodity hardware.
ISSN:1530-1834
2377-5416
DOI:10.1109/SIBGRAPI.2011.24