Sensitivity-Based Adaptive Learning Rules for Binary Feedforward Neural Networks
This paper proposes a set of adaptive learning rules for binary feedforward neural networks (BFNNs) by means of the sensitivity measure that is established to investigate the effect of a BFNN's weight variation on its output. The rules are based on three basic adaptive learning principles: the...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2012-03, Vol.23 (3), p.480-491 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a set of adaptive learning rules for binary feedforward neural networks (BFNNs) by means of the sensitivity measure that is established to investigate the effect of a BFNN's weight variation on its output. The rules are based on three basic adaptive learning principles: the benefit principle, the minimal disturbance principle, and the burden-sharing principle. In order to follow the benefit principle and the minimal disturbance principle, a neuron selection rule and a weight adaptation rule are developed. Besides, a learning control rule is developed to follow the burden-sharing principle. The advantage of the rules is that they can effectively guide the BFNN's learning to conduct constructive adaptations and avoid destructive ones. With these rules, a sensitivity-based adaptive learning (SBALR) algorithm for BFNNs is presented. Experimental results on a number of benchmark data demonstrate that the SBALR algorithm has better learning performance than the Madaline rule II and backpropagation algorithms. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2011.2177860 |