Compressed Network Tomography for Probabilistic Tree Mixture Models

We consider the problem of network tomography in probabilistic tree mixture models. We invoke the theory of compressed sensing and prove that the distribution of a random communication network model with n nodes represented by a probabilistic mixture of k trees can be identified using low order rout...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khajehnejad, M. A., Khojastepour, A., Hassibi, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Khajehnejad, M. A.
Khojastepour, A.
Hassibi, B.
description We consider the problem of network tomography in probabilistic tree mixture models. We invoke the theory of compressed sensing and prove that the distribution of a random communication network model with n nodes represented by a probabilistic mixture of k trees can be identified using low order routing summaries pertinent to groups of small sizes d
doi_str_mv 10.1109/GLOCOM.2011.6133853
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6133853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6133853</ieee_id><sourcerecordid>6133853</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-24ccb66bfc16c3cfbdfda0249955c7be759e3e077853cb564bb13e6f5cc2eff03</originalsourceid><addsrcrecordid>eNpVkLtOwzAYRs1NopQ-QZe8QILvjkcUQUFKKUOQulWx8xsMiRzZQbRvTyW6MJ3hk470HYSWBBeEYH23qjfVZl1QTEghCWOlYGdooVVJOOVcU1mW52hGhZK5knx78W-T_BLNiGY4F1Rvr9FNSp8YC14KMkNVFYYxQkrQZS8w_YT4lTVhCO-xHT8OmQsxe43BtMb3Pk3eZk0EyNZ-P33HI0MHfbpFV67tEyxOnKO3x4emesrrzeq5uq9zT5SYcsqtNVIaZ4m0zDrTua7FlGsthFUGlNDAACt1fGeNkNwYwkA6YS0F5zCbo-Wf1wPAbox-aONhd-rBfgGzMlGg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Compressed Network Tomography for Probabilistic Tree Mixture Models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khajehnejad, M. A. ; Khojastepour, A. ; Hassibi, B.</creator><creatorcontrib>Khajehnejad, M. A. ; Khojastepour, A. ; Hassibi, B.</creatorcontrib><description>We consider the problem of network tomography in probabilistic tree mixture models. We invoke the theory of compressed sensing and prove that the distribution of a random communication network model with n nodes represented by a probabilistic mixture of k trees can be identified using low order routing summaries pertinent to groups of small sizes d &lt;;&lt;; n in the network. We prove that, if the number of collected statistics m is at least O(n log k ), then certain classes of inference algorithms can successfully determine the unknown model, i.e. the topologies of mixing trees and their corresponding probabilities. We show that a variation of ℓ 1 minimization over the space of all possible trees of n nodes can be used for this purpose. In addition, we propose a novel inference algorithm with a complexity polynomial in n log k , with the same provable guarantee. The proposed model is applicable to practical situations such as ad-hoc and Peer-to-Peer(P2P) networks, and the presented inference method can lead to distributed protocols for network monitoring and tomography. In particular, we provide preliminary insight and numerical results on how the ideas are amenable to wireless sensor networks.</description><identifier>ISSN: 1930-529X</identifier><identifier>ISBN: 9781424492664</identifier><identifier>ISBN: 1424492661</identifier><identifier>EISSN: 2576-764X</identifier><identifier>EISBN: 9781424492688</identifier><identifier>EISBN: 9781424492671</identifier><identifier>EISBN: 1424492688</identifier><identifier>EISBN: 142449267X</identifier><identifier>DOI: 10.1109/GLOCOM.2011.6133853</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ad hoc networks ; Inference algorithms ; Mathematical model ; Peer to peer computing ; Probabilistic logic ; Routing ; Tomography</subject><ispartof>2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6133853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6133853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khajehnejad, M. A.</creatorcontrib><creatorcontrib>Khojastepour, A.</creatorcontrib><creatorcontrib>Hassibi, B.</creatorcontrib><title>Compressed Network Tomography for Probabilistic Tree Mixture Models</title><title>2011 IEEE Global Telecommunications Conference - GLOBECOM 2011</title><addtitle>GLOCOM</addtitle><description>We consider the problem of network tomography in probabilistic tree mixture models. We invoke the theory of compressed sensing and prove that the distribution of a random communication network model with n nodes represented by a probabilistic mixture of k trees can be identified using low order routing summaries pertinent to groups of small sizes d &lt;;&lt;; n in the network. We prove that, if the number of collected statistics m is at least O(n log k ), then certain classes of inference algorithms can successfully determine the unknown model, i.e. the topologies of mixing trees and their corresponding probabilities. We show that a variation of ℓ 1 minimization over the space of all possible trees of n nodes can be used for this purpose. In addition, we propose a novel inference algorithm with a complexity polynomial in n log k , with the same provable guarantee. The proposed model is applicable to practical situations such as ad-hoc and Peer-to-Peer(P2P) networks, and the presented inference method can lead to distributed protocols for network monitoring and tomography. In particular, we provide preliminary insight and numerical results on how the ideas are amenable to wireless sensor networks.</description><subject>Ad hoc networks</subject><subject>Inference algorithms</subject><subject>Mathematical model</subject><subject>Peer to peer computing</subject><subject>Probabilistic logic</subject><subject>Routing</subject><subject>Tomography</subject><issn>1930-529X</issn><issn>2576-764X</issn><isbn>9781424492664</isbn><isbn>1424492661</isbn><isbn>9781424492688</isbn><isbn>9781424492671</isbn><isbn>1424492688</isbn><isbn>142449267X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkLtOwzAYRs1NopQ-QZe8QILvjkcUQUFKKUOQulWx8xsMiRzZQbRvTyW6MJ3hk470HYSWBBeEYH23qjfVZl1QTEghCWOlYGdooVVJOOVcU1mW52hGhZK5knx78W-T_BLNiGY4F1Rvr9FNSp8YC14KMkNVFYYxQkrQZS8w_YT4lTVhCO-xHT8OmQsxe43BtMb3Pk3eZk0EyNZ-P33HI0MHfbpFV67tEyxOnKO3x4emesrrzeq5uq9zT5SYcsqtNVIaZ4m0zDrTua7FlGsthFUGlNDAACt1fGeNkNwYwkA6YS0F5zCbo-Wf1wPAbox-aONhd-rBfgGzMlGg</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Khajehnejad, M. A.</creator><creator>Khojastepour, A.</creator><creator>Hassibi, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201112</creationdate><title>Compressed Network Tomography for Probabilistic Tree Mixture Models</title><author>Khajehnejad, M. A. ; Khojastepour, A. ; Hassibi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-24ccb66bfc16c3cfbdfda0249955c7be759e3e077853cb564bb13e6f5cc2eff03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ad hoc networks</topic><topic>Inference algorithms</topic><topic>Mathematical model</topic><topic>Peer to peer computing</topic><topic>Probabilistic logic</topic><topic>Routing</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Khajehnejad, M. A.</creatorcontrib><creatorcontrib>Khojastepour, A.</creatorcontrib><creatorcontrib>Hassibi, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khajehnejad, M. A.</au><au>Khojastepour, A.</au><au>Hassibi, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Compressed Network Tomography for Probabilistic Tree Mixture Models</atitle><btitle>2011 IEEE Global Telecommunications Conference - GLOBECOM 2011</btitle><stitle>GLOCOM</stitle><date>2011-12</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1930-529X</issn><eissn>2576-764X</eissn><isbn>9781424492664</isbn><isbn>1424492661</isbn><eisbn>9781424492688</eisbn><eisbn>9781424492671</eisbn><eisbn>1424492688</eisbn><eisbn>142449267X</eisbn><abstract>We consider the problem of network tomography in probabilistic tree mixture models. We invoke the theory of compressed sensing and prove that the distribution of a random communication network model with n nodes represented by a probabilistic mixture of k trees can be identified using low order routing summaries pertinent to groups of small sizes d &lt;;&lt;; n in the network. We prove that, if the number of collected statistics m is at least O(n log k ), then certain classes of inference algorithms can successfully determine the unknown model, i.e. the topologies of mixing trees and their corresponding probabilities. We show that a variation of ℓ 1 minimization over the space of all possible trees of n nodes can be used for this purpose. In addition, we propose a novel inference algorithm with a complexity polynomial in n log k , with the same provable guarantee. The proposed model is applicable to practical situations such as ad-hoc and Peer-to-Peer(P2P) networks, and the presented inference method can lead to distributed protocols for network monitoring and tomography. In particular, we provide preliminary insight and numerical results on how the ideas are amenable to wireless sensor networks.</abstract><pub>IEEE</pub><doi>10.1109/GLOCOM.2011.6133853</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1930-529X
ispartof 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, 2011, p.1-6
issn 1930-529X
2576-764X
language eng
recordid cdi_ieee_primary_6133853
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Ad hoc networks
Inference algorithms
Mathematical model
Peer to peer computing
Probabilistic logic
Routing
Tomography
title Compressed Network Tomography for Probabilistic Tree Mixture Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Compressed%20Network%20Tomography%20for%20Probabilistic%20Tree%20Mixture%20Models&rft.btitle=2011%20IEEE%20Global%20Telecommunications%20Conference%20-%20GLOBECOM%202011&rft.au=Khajehnejad,%20M.%20A.&rft.date=2011-12&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1930-529X&rft.eissn=2576-764X&rft.isbn=9781424492664&rft.isbn_list=1424492661&rft_id=info:doi/10.1109/GLOCOM.2011.6133853&rft_dat=%3Cieee_6IE%3E6133853%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424492688&rft.eisbn_list=9781424492671&rft.eisbn_list=1424492688&rft.eisbn_list=142449267X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6133853&rfr_iscdi=true