Compressed Network Tomography for Probabilistic Tree Mixture Models
We consider the problem of network tomography in probabilistic tree mixture models. We invoke the theory of compressed sensing and prove that the distribution of a random communication network model with n nodes represented by a probabilistic mixture of k trees can be identified using low order rout...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of network tomography in probabilistic tree mixture models. We invoke the theory of compressed sensing and prove that the distribution of a random communication network model with n nodes represented by a probabilistic mixture of k trees can be identified using low order routing summaries pertinent to groups of small sizes d |
---|---|
ISSN: | 1930-529X 2576-764X |
DOI: | 10.1109/GLOCOM.2011.6133853 |