THEMIS: A Mutually Verifiable Billing System for the Cloud Computing Environment
With the widespread adoption of cloud computing, the ability to record and account for the usage of cloud resources in a credible and verifiable way has become critical for cloud service providers and users alike. The success of such a billing system depends on several factors: The billing transacti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2013-07, Vol.6 (3), p.300-313 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the widespread adoption of cloud computing, the ability to record and account for the usage of cloud resources in a credible and verifiable way has become critical for cloud service providers and users alike. The success of such a billing system depends on several factors: The billing transactions must have integrity and nonrepudiation capabilities; the billing transactions must be nonobstructive and have a minimal computation cost; and the service level agreement (SLA) monitoring should be provided in a trusted manner. Existing billing systems are limited in terms of security capabilities or computational overhead. In this paper, we propose a secure and nonobstructive billing system called THEMIS as a remedy for these limitations. The system uses a novel concept of a cloud notary authority for the supervision of billing. The cloud notary authority generates mutually verifiable binding information that can be used to resolve future disputes between a user and a cloud service provider in a computationally efficient way. Furthermore, to provide a forgery-resistive SLA monitoring mechanism, we devised a SLA monitoring module enhanced with a trusted platform module (TPM), called S-Mon. The performance evaluation confirms that the overall latency of THEMIS billing transactions (avg. 4.89 ms) is much shorter than the latency of public key infrastructure (PKI)-based billing transactions (avg. 82.51 ms), though THEMIS guarantees identical security features as a PKI. This work has been undertaken on a real cloud computing service called iCubeCloud. |
---|---|
ISSN: | 1939-1374 1939-1374 2372-0204 |
DOI: | 10.1109/TSC.2012.1 |