Learning to cluster using high order graphical models with latent variables

This paper proposes a very general max-margin learning framework for distance-based clustering. To this end, it formulates clustering as a high order energy minimization problem with latent variables, and applies a dual decomposition approach for training this model. The resulting framework allows l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Komodakis, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a very general max-margin learning framework for distance-based clustering. To this end, it formulates clustering as a high order energy minimization problem with latent variables, and applies a dual decomposition approach for training this model. The resulting framework allows learning a very broad class of distance functions, permits an automatic determination of the number of clusters during testing, and is also very efficient. As an additional contribution, we show how our method can be generalized to handle the training of a very broad class of important models in computer vision: arbitrary high-order latent CRFs. Experimental results verify its effectiveness.
ISSN:1550-5499
2380-7504
DOI:10.1109/ICCV.2011.6126227