Adaptive Pattern-driven Compression of Large-Area High-Resolution Terrain Data
This paper presents a novel adaptive pattern-driven approach for compressing large-area high-resolution terrain data. Utilizing a pattern-driven model, the proposed approach achieves efficient terrain data reduction by modeling and encoding disparate visual patterns using a compact set of extracted...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel adaptive pattern-driven approach for compressing large-area high-resolution terrain data. Utilizing a pattern-driven model, the proposed approach achieves efficient terrain data reduction by modeling and encoding disparate visual patterns using a compact set of extracted features. The feasibility and efficiency of the proposed technique were corroborated by experiments using various terrain datasets and comparisons with the state-of-the-art compression techniques. Since different visual patterns are separated and modeled explicitly during the compression process, the proposed technique also holds a great potential for providing a good synergy between compression and compressed-domain analysis. |
---|---|
DOI: | 10.1109/ISM.2011.62 |