Period Distribution of Generalized Discrete Arnold Cat Map for N=p

In this paper, we analyze the period distribution of the generalized discrete cat map over the Galois ring where is a prime. The sequences generated by this map are modeled as 2-dimensional LFSR sequences. Employing the generation function and the Hensel lifting approaches, full knowledge of the det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2012-01, Vol.58 (1), p.445-452
Hauptverfasser: Chen, Fei, Wong, Kwok-Wo, Liao, Xiaofeng, Xiang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we analyze the period distribution of the generalized discrete cat map over the Galois ring where is a prime. The sequences generated by this map are modeled as 2-dimensional LFSR sequences. Employing the generation function and the Hensel lifting approaches, full knowledge of the detail period distribution is obtained analytically. Our results not only characterize the period distribution of the cat map, which gives insights to various applications, but also demonstrate some approaches to deal with the period of a polynomial in the Galois ring.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2011.2171534