Multi-objective particle swarm optimization for optimal power flow in a deregulated environment of power systems

In this paper, a multi-objective particle swarm optimization (MOPSO) technique is proposed for solving the optimal power flow (OPF) problem in a deregulated environment. The OPF problem is formulated as a nonlinear constrained multi-objective optimization problem where the fuel cost and wheeling cos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zaro, F. R., Abido, M. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1127
container_issue
container_start_page 1122
container_title
container_volume
creator Zaro, F. R.
Abido, M. A.
description In this paper, a multi-objective particle swarm optimization (MOPSO) technique is proposed for solving the optimal power flow (OPF) problem in a deregulated environment. The OPF problem is formulated as a nonlinear constrained multi-objective optimization problem where the fuel cost and wheeling cost are to be optimized simultaneously. MVA-km method is used to calculate the wheeling cost in the system. The proposed approach handles the problem as a true multi-objective optimization problem. The results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal solutions of the multi-objective OPF problem in one single run. In addition, the effectiveness of the proposed approach and its potential to solve the multi-objective OPF problem are confirmed. IEEE 30 bus system is considered to demonstrate the suitability of this algorithm.
doi_str_mv 10.1109/ISDA.2011.6121809
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6121809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6121809</ieee_id><sourcerecordid>6121809</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-75196857c558d8651f8136ee17a17cf0bbeeb13f21b805dfbb3ca8145861e94a3</originalsourceid><addsrcrecordid>eNo9kMtqwzAURNXSQtM0H1C60Q841bWt1zKkr0BKF80-yPZVUbAtIykx6dc3kNDVDMMwDIeQR2BzAKafV98vi3nOAOYCclBMX5F7KLmUICTn12SSgygzCRxu_n1Z3JFZjDvGGDCplZYTMnzu2-QyX-2wTu6AdDAhubpFGkcTOuqH5Dr3a5LzPbU-nAPT0sGPGKht_UhdTw1tMODPvjUJG4r9wQXfd9gn6u2lGo8xYRcfyK01bcTZRadk8_a6WX5k66_31XKxzpxmKZMctFBc1pyrRgkOVkEhEEEakLVlVYVYQWFzqBTjja2qojbqBEAJQF2aYkqezrMOEbdDOH0Ox-2FVfEHudVeEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-objective particle swarm optimization for optimal power flow in a deregulated environment of power systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zaro, F. R. ; Abido, M. A.</creator><creatorcontrib>Zaro, F. R. ; Abido, M. A.</creatorcontrib><description>In this paper, a multi-objective particle swarm optimization (MOPSO) technique is proposed for solving the optimal power flow (OPF) problem in a deregulated environment. The OPF problem is formulated as a nonlinear constrained multi-objective optimization problem where the fuel cost and wheeling cost are to be optimized simultaneously. MVA-km method is used to calculate the wheeling cost in the system. The proposed approach handles the problem as a true multi-objective optimization problem. The results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal solutions of the multi-objective OPF problem in one single run. In addition, the effectiveness of the proposed approach and its potential to solve the multi-objective OPF problem are confirmed. IEEE 30 bus system is considered to demonstrate the suitability of this algorithm.</description><identifier>ISSN: 2164-7143</identifier><identifier>EISSN: 2164-7151</identifier><identifier>EISBN: 1457716755</identifier><identifier>EISBN: 9781457716751</identifier><identifier>EISBN: 9781457716768</identifier><identifier>EISBN: 1457716763</identifier><identifier>DOI: 10.1109/ISDA.2011.6121809</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fuel cos ; Fuels ; Generators ; Load flow ; Multi-objective optimization Optimal power flow ; Pareto optimization ; Particle swarm optimization ; Reactive power ; Wheeling cost</subject><ispartof>2011 11th International Conference on Intelligent Systems Design and Applications, 2011, p.1122-1127</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6121809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6121809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zaro, F. R.</creatorcontrib><creatorcontrib>Abido, M. A.</creatorcontrib><title>Multi-objective particle swarm optimization for optimal power flow in a deregulated environment of power systems</title><title>2011 11th International Conference on Intelligent Systems Design and Applications</title><addtitle>ISDA</addtitle><description>In this paper, a multi-objective particle swarm optimization (MOPSO) technique is proposed for solving the optimal power flow (OPF) problem in a deregulated environment. The OPF problem is formulated as a nonlinear constrained multi-objective optimization problem where the fuel cost and wheeling cost are to be optimized simultaneously. MVA-km method is used to calculate the wheeling cost in the system. The proposed approach handles the problem as a true multi-objective optimization problem. The results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal solutions of the multi-objective OPF problem in one single run. In addition, the effectiveness of the proposed approach and its potential to solve the multi-objective OPF problem are confirmed. IEEE 30 bus system is considered to demonstrate the suitability of this algorithm.</description><subject>Fuel cos</subject><subject>Fuels</subject><subject>Generators</subject><subject>Load flow</subject><subject>Multi-objective optimization Optimal power flow</subject><subject>Pareto optimization</subject><subject>Particle swarm optimization</subject><subject>Reactive power</subject><subject>Wheeling cost</subject><issn>2164-7143</issn><issn>2164-7151</issn><isbn>1457716755</isbn><isbn>9781457716751</isbn><isbn>9781457716768</isbn><isbn>1457716763</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtqwzAURNXSQtM0H1C60Q841bWt1zKkr0BKF80-yPZVUbAtIykx6dc3kNDVDMMwDIeQR2BzAKafV98vi3nOAOYCclBMX5F7KLmUICTn12SSgygzCRxu_n1Z3JFZjDvGGDCplZYTMnzu2-QyX-2wTu6AdDAhubpFGkcTOuqH5Dr3a5LzPbU-nAPT0sGPGKht_UhdTw1tMODPvjUJG4r9wQXfd9gn6u2lGo8xYRcfyK01bcTZRadk8_a6WX5k66_31XKxzpxmKZMctFBc1pyrRgkOVkEhEEEakLVlVYVYQWFzqBTjja2qojbqBEAJQF2aYkqezrMOEbdDOH0Ox-2FVfEHudVeEQ</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Zaro, F. R.</creator><creator>Abido, M. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Multi-objective particle swarm optimization for optimal power flow in a deregulated environment of power systems</title><author>Zaro, F. R. ; Abido, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-75196857c558d8651f8136ee17a17cf0bbeeb13f21b805dfbb3ca8145861e94a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Fuel cos</topic><topic>Fuels</topic><topic>Generators</topic><topic>Load flow</topic><topic>Multi-objective optimization Optimal power flow</topic><topic>Pareto optimization</topic><topic>Particle swarm optimization</topic><topic>Reactive power</topic><topic>Wheeling cost</topic><toplevel>online_resources</toplevel><creatorcontrib>Zaro, F. R.</creatorcontrib><creatorcontrib>Abido, M. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaro, F. R.</au><au>Abido, M. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-objective particle swarm optimization for optimal power flow in a deregulated environment of power systems</atitle><btitle>2011 11th International Conference on Intelligent Systems Design and Applications</btitle><stitle>ISDA</stitle><date>2011-11</date><risdate>2011</risdate><spage>1122</spage><epage>1127</epage><pages>1122-1127</pages><issn>2164-7143</issn><eissn>2164-7151</eissn><eisbn>1457716755</eisbn><eisbn>9781457716751</eisbn><eisbn>9781457716768</eisbn><eisbn>1457716763</eisbn><abstract>In this paper, a multi-objective particle swarm optimization (MOPSO) technique is proposed for solving the optimal power flow (OPF) problem in a deregulated environment. The OPF problem is formulated as a nonlinear constrained multi-objective optimization problem where the fuel cost and wheeling cost are to be optimized simultaneously. MVA-km method is used to calculate the wheeling cost in the system. The proposed approach handles the problem as a true multi-objective optimization problem. The results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal solutions of the multi-objective OPF problem in one single run. In addition, the effectiveness of the proposed approach and its potential to solve the multi-objective OPF problem are confirmed. IEEE 30 bus system is considered to demonstrate the suitability of this algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ISDA.2011.6121809</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-7143
ispartof 2011 11th International Conference on Intelligent Systems Design and Applications, 2011, p.1122-1127
issn 2164-7143
2164-7151
language eng
recordid cdi_ieee_primary_6121809
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fuel cos
Fuels
Generators
Load flow
Multi-objective optimization Optimal power flow
Pareto optimization
Particle swarm optimization
Reactive power
Wheeling cost
title Multi-objective particle swarm optimization for optimal power flow in a deregulated environment of power systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-objective%20particle%20swarm%20optimization%20for%20optimal%20power%20flow%20in%20a%20deregulated%20environment%20of%20power%20systems&rft.btitle=2011%2011th%20International%20Conference%20on%20Intelligent%20Systems%20Design%20and%20Applications&rft.au=Zaro,%20F.%20R.&rft.date=2011-11&rft.spage=1122&rft.epage=1127&rft.pages=1122-1127&rft.issn=2164-7143&rft.eissn=2164-7151&rft_id=info:doi/10.1109/ISDA.2011.6121809&rft_dat=%3Cieee_6IE%3E6121809%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457716755&rft.eisbn_list=9781457716751&rft.eisbn_list=9781457716768&rft.eisbn_list=1457716763&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6121809&rfr_iscdi=true