Multi-objective particle swarm optimization for optimal power flow in a deregulated environment of power systems

In this paper, a multi-objective particle swarm optimization (MOPSO) technique is proposed for solving the optimal power flow (OPF) problem in a deregulated environment. The OPF problem is formulated as a nonlinear constrained multi-objective optimization problem where the fuel cost and wheeling cos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zaro, F. R., Abido, M. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a multi-objective particle swarm optimization (MOPSO) technique is proposed for solving the optimal power flow (OPF) problem in a deregulated environment. The OPF problem is formulated as a nonlinear constrained multi-objective optimization problem where the fuel cost and wheeling cost are to be optimized simultaneously. MVA-km method is used to calculate the wheeling cost in the system. The proposed approach handles the problem as a true multi-objective optimization problem. The results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal solutions of the multi-objective OPF problem in one single run. In addition, the effectiveness of the proposed approach and its potential to solve the multi-objective OPF problem are confirmed. IEEE 30 bus system is considered to demonstrate the suitability of this algorithm.
ISSN:2164-7143
2164-7151
DOI:10.1109/ISDA.2011.6121809