Robust abandoned object detection using region-level analysis

We propose a robust abandoned object detection algorithm for real-time video surveillance. Different from conventional approaches that mostly rely on pixel-level processing, we perform region-level analysis in both background maintenance and static foreground object detection. In background maintena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jiyan Pan, Quanfu Fan, Pankanti, Sharath
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a robust abandoned object detection algorithm for real-time video surveillance. Different from conventional approaches that mostly rely on pixel-level processing, we perform region-level analysis in both background maintenance and static foreground object detection. In background maintenance, region-level information is fed back to adaptively control the learning rate. In static foreground object detection, region-level analysis double-checks the validity of candidate abandoned blobs. Attributed to such analysis, our algorithm is robust against illumination change, "ghosts" left by removed objects, distractions from partially static objects, and occlusions. Experiments on nearly 130,000 frames of i-LIDS dataset show the superior performance of our approach.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2011.6116495