Efficient Use of Unused Spare Columns to Improve Memory Error Correcting Rate

In the deep sub-micron ICs, growing amounts of on-die memory and scaling effects make embedded memories increasingly vulnerable to reliability and yield problems. Spare columns are often included in memories to repair defective cells or bit lines during production test. In many cases, the repair pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ishaq, U., Jihun Jung, Jaehoon Song, Sungju Park
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the deep sub-micron ICs, growing amounts of on-die memory and scaling effects make embedded memories increasingly vulnerable to reliability and yield problems. Spare columns are often included in memories to repair defective cells or bit lines during production test. In many cases, the repair process will not use all spare columns. Schemes have been proposed to exploit these unused spare columns to store additional check bits which can be used to reduce the miscorrection probability for triple errors in single error correction - double error detection (SEC-DED). These additional check bits increase the dimensions of the parity check matrix (H-matrix) requiring extra area and delay overhead. A method is proposed in this paper to efficiently fill the extra rows of the H-matrix on the basis of similarity of logic between the other rows. Optimization of the whole H-matrix is accomplished through logic sharing within a feasible operating time resulting in the reduced area and delay overhead.
ISSN:1081-7735
2377-5386
DOI:10.1109/ATS.2011.28