Identification of DC motor drive system model using Radial Basis Function (RBF) Neural Network

In this paper, we present a Radial Basis Function Neural Network (RBFNN)-based Nonlinear Auto-Regressive Model with Exegeneous Inputs (NARX) model of a DC motor drive controller model by (Rahim, 2004). Tests were conducted to measure the accuracy of the model (using One Step Ahead (OSA) and its vali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yassin, I. M., Taib, M. N., Abdul Aziz, Mohd Zafran, Abdul Rahim, Norasmadi, Tahir, N. M., Johari, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a Radial Basis Function Neural Network (RBFNN)-based Nonlinear Auto-Regressive Model with Exegeneous Inputs (NARX) model of a DC motor drive controller model by (Rahim, 2004). Tests were conducted to measure the accuracy of the model (using One Step Ahead (OSA) and its validity (using correlation tests and histogram analysis). The resulting model produced Mean Square Error (MSE) of 8.53 × 10 -3 and 8.82 × 10 -3 on the training set and test set, respectively, while fulfilling all validation tests performed.
DOI:10.1109/ISIEA.2011.6108685