The STeTSiMS STT-RAM simulation and modeling system
There is growing interest in emerging non-volatile memory technologies such as Phase-Change Memory, Memristors, and Spin-Transfer Torque RAM (STT-RAM). STT-RAM, in particular, is experiencing rapid development that can be difficult for memory systems researchers to take advantage of. What is needed...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is growing interest in emerging non-volatile memory technologies such as Phase-Change Memory, Memristors, and Spin-Transfer Torque RAM (STT-RAM). STT-RAM, in particular, is experiencing rapid development that can be difficult for memory systems researchers to take advantage of. What is needed are techniques that enable designers to explore the potential of recent STT-RAM designs and adjust the performance without needing a detailed understanding of the physics. In this paper, we present the STeTSiMS STT-RAM Simulation and Modeling System to assist memory systems researchers. After providing background on the operation of STT-RAM magnetic tunnel junctions (MTJs), we demonstrate how to fit three different published MTJ models to our model and normalize their characteristics with respect to common metrics. The high-speed switching behavior of the designs is evaluated using macromagnetic simulations. We have also added a first-order model for STT-RAM memory arrays to the CACTI memory modeling tool, which we then use to evaluate the performance, energy consumption, and area for: (i) a high-performance cache, (ii) a high-capacity cache, and (iii) a high-density memory. |
---|---|
ISSN: | 1092-3152 1558-2434 |
DOI: | 10.1109/ICCAD.2011.6105348 |