An Adaptive Derivative Free Method for Bayesian Posterior Approximation

In the Gaussian mixture approach a Bayesian posterior probability distribution function is approximated using a weighted sum of Gaussians. This work presents a novel method for generating a Gaussian mixture by splitting the prior taking the direction of maximum nonlinearity into account. The propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2012-02, Vol.19 (2), p.87-90
Hauptverfasser: Raitoharju, M., Ali-Loytty, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the Gaussian mixture approach a Bayesian posterior probability distribution function is approximated using a weighted sum of Gaussians. This work presents a novel method for generating a Gaussian mixture by splitting the prior taking the direction of maximum nonlinearity into account. The proposed method is computationally feasible and does not require analytical differentiation. Tests show that the method approximates the posterior better with fewer Gaussian components than existing methods.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2011.2179800