Boost: Boosting with the Universum

It has been shown that the Universum data, which do not belong to either class of the classification problem of interest, may contain useful prior domain knowledge for training a classifier [1], [2]. In this work, we design a novel boosting algorithm that takes advantage of the available Universum d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2012-04, Vol.34 (4), p.825-832
Hauptverfasser: Shen, Chunhua, Wang, Peng, Shen, Fumin, Wang, Hanzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been shown that the Universum data, which do not belong to either class of the classification problem of interest, may contain useful prior domain knowledge for training a classifier [1], [2]. In this work, we design a novel boosting algorithm that takes advantage of the available Universum data, hence the name UBoost. UBoost is a boosting implementation of Vapnik's alternative capacity concept to the large margin approach. In addition to the standard regularization term, UBoost also controls the learned model's capacity by maximizing the number of observed contradictions. Our experiments demonstrate that UBoost can deliver improved classification accuracy over standard boosting algorithms that use labeled data alone.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2011.240