Single Image Super-Resolution via Sparse Representation in Gradient Domain
Image super-resolution (SR) reconstruction is one of the most popular research topics in image processing for decades. This paper presents a novel approach to deal with single image SR problem. We search a mapping between a pair of low-resolution and high-resolution image patch in gradient domain by...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Image super-resolution (SR) reconstruction is one of the most popular research topics in image processing for decades. This paper presents a novel approach to deal with single image SR problem. We search a mapping between a pair of low-resolution and high-resolution image patch in gradient domain by learning a generic image database and the input image itself. Given low-resolution image, the high-resolution image is reconstructed using sparse representation in gradient domain and solving Poisson equation. Experiments demonstrate that the state-of-the-art results have been achieved compared to other SR methods in terms of both PSNR and visual perception. |
---|---|
ISSN: | 2162-8998 |
DOI: | 10.1109/MINES.2011.126 |