SPEED: An Inhabitant Activity Prediction Algorithm for Smart Homes
This paper proposes an algorithm, called sequence prediction via enhanced episode discovery (SPEED), to predict inhabitant activity in smart homes. SPEED is a variant of the sequence prediction algorithm. It works with the episodes of smart home events that have been extracted based on the on -off s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2012-07, Vol.42 (4), p.985-990 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes an algorithm, called sequence prediction via enhanced episode discovery (SPEED), to predict inhabitant activity in smart homes. SPEED is a variant of the sequence prediction algorithm. It works with the episodes of smart home events that have been extracted based on the on -off states of home appliances. An episode is a set of sequential user activities that periodically occur in smart homes. The extracted episodes are processed and arranged in a finite-order Markov model. A method based on prediction by partial matching (PPM) algorithm is applied to predict the next activity from the previous history. The result shows that SPEED achieves an 88.3% prediction accuracy, which is better than LeZi Update, Active LeZi, IPAM, and C4.5. |
---|---|
ISSN: | 1083-4427 1558-2426 |
DOI: | 10.1109/TSMCA.2011.2173568 |