MRMR optimized classification for automatic glaucoma diagnosis
Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimiz...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6231 |
---|---|
container_issue | |
container_start_page | 6228 |
container_title | |
container_volume | 2011 |
creator | Zhuo Zhang Chee Keong Kwoh Jiang Liu Fengshou Yin Wirawan, A. Cheung, C. Baskaran, M. Tin Aung Tien Yin Wong |
description | Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimized classifier is further trained using the candidate feature sets to find the optimized classifier. We tested the proposed methodology on eye records of 650 subjects collected from Singapore Eye Research Institute. The experimental results demonstrate that the new classifier is much compact by using less than ¼ of the initial feature set. The ranked feature set also enables the clinicians to better access the diagnostic process of the algorithm. The work is a further step towards the advancement of the automatic glaucoma diagnosis. |
doi_str_mv | 10.1109/IEMBS.2011.6091538 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6091538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091538</ieee_id><sourcerecordid>22255762</sourcerecordid><originalsourceid>FETCH-LOGICAL-i300t-826f7aa00bf22ebe752a831b333b55569a1145c2b0c3d6a16cbe81098a3c2cc93</originalsourceid><addsrcrecordid>eNo9kN1Kw0AQhdc_bK15AQXJC6TuzP5k90bQUrXQIFQF78ruZlNWmiZ00wt9egNtnZs5w3c4cIaQG6BjAKrvZ9Pi6X2MFGAsqQbB1Am5Ao6cc0CUp2QIQqiMSxBnJNG5OjKA855RzTOp8q8BSWL8pv1IqRnDSzJARCFyiUPyUCyKRdq0XajDry9TtzYxhio404Vmk1bNNjW7rqn706Wrtdm5XqdlMKtNE0O8JheVWUefHPaIfD5PPyav2fztZTZ5nGeBUdplCmWVG0OprRC99blAoxhYxpgVQkhtALhwaKljpTQgnfWqL6AMc-icZiNyt89td7b25bLdhtpsf5bHIr3hdm8I3vt_fHgb-wPQEFli</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MRMR optimized classification for automatic glaucoma diagnosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhuo Zhang ; Chee Keong Kwoh ; Jiang Liu ; Fengshou Yin ; Wirawan, A. ; Cheung, C. ; Baskaran, M. ; Tin Aung ; Tien Yin Wong</creator><creatorcontrib>Zhuo Zhang ; Chee Keong Kwoh ; Jiang Liu ; Fengshou Yin ; Wirawan, A. ; Cheung, C. ; Baskaran, M. ; Tin Aung ; Tien Yin Wong</creatorcontrib><description>Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimized classifier is further trained using the candidate feature sets to find the optimized classifier. We tested the proposed methodology on eye records of 650 subjects collected from Singapore Eye Research Institute. The experimental results demonstrate that the new classifier is much compact by using less than ¼ of the initial feature set. The ranked feature set also enables the clinicians to better access the diagnostic process of the algorithm. The work is a further step towards the advancement of the automatic glaucoma diagnosis.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091538</identifier><identifier>PMID: 22255762</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Area Under Curve ; Artificial Intelligence ; Automatic Data Processing ; Biomedical optical imaging ; Databases, Factual ; Decision Support Systems, Clinical ; Diagnosis, Computer-Assisted - methods ; Diagnostic Imaging - methods ; Feature extraction ; Glaucoma - diagnosis ; Glaucoma - pathology ; Humans ; Models, Statistical ; Ophthalmoscopy - methods ; Optical fibers ; Optical imaging ; Reproducibility of Results ; Retina</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6228-6231</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091538$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091538$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22255762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuo Zhang</creatorcontrib><creatorcontrib>Chee Keong Kwoh</creatorcontrib><creatorcontrib>Jiang Liu</creatorcontrib><creatorcontrib>Fengshou Yin</creatorcontrib><creatorcontrib>Wirawan, A.</creatorcontrib><creatorcontrib>Cheung, C.</creatorcontrib><creatorcontrib>Baskaran, M.</creatorcontrib><creatorcontrib>Tin Aung</creatorcontrib><creatorcontrib>Tien Yin Wong</creatorcontrib><title>MRMR optimized classification for automatic glaucoma diagnosis</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimized classifier is further trained using the candidate feature sets to find the optimized classifier. We tested the proposed methodology on eye records of 650 subjects collected from Singapore Eye Research Institute. The experimental results demonstrate that the new classifier is much compact by using less than ¼ of the initial feature set. The ranked feature set also enables the clinicians to better access the diagnostic process of the algorithm. The work is a further step towards the advancement of the automatic glaucoma diagnosis.</description><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>Artificial Intelligence</subject><subject>Automatic Data Processing</subject><subject>Biomedical optical imaging</subject><subject>Databases, Factual</subject><subject>Decision Support Systems, Clinical</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnostic Imaging - methods</subject><subject>Feature extraction</subject><subject>Glaucoma - diagnosis</subject><subject>Glaucoma - pathology</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Ophthalmoscopy - methods</subject><subject>Optical fibers</subject><subject>Optical imaging</subject><subject>Reproducibility of Results</subject><subject>Retina</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kN1Kw0AQhdc_bK15AQXJC6TuzP5k90bQUrXQIFQF78ruZlNWmiZ00wt9egNtnZs5w3c4cIaQG6BjAKrvZ9Pi6X2MFGAsqQbB1Am5Ao6cc0CUp2QIQqiMSxBnJNG5OjKA855RzTOp8q8BSWL8pv1IqRnDSzJARCFyiUPyUCyKRdq0XajDry9TtzYxhio404Vmk1bNNjW7rqn706Wrtdm5XqdlMKtNE0O8JheVWUefHPaIfD5PPyav2fztZTZ5nGeBUdplCmWVG0OprRC99blAoxhYxpgVQkhtALhwaKljpTQgnfWqL6AMc-icZiNyt89td7b25bLdhtpsf5bHIr3hdm8I3vt_fHgb-wPQEFli</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Zhuo Zhang</creator><creator>Chee Keong Kwoh</creator><creator>Jiang Liu</creator><creator>Fengshou Yin</creator><creator>Wirawan, A.</creator><creator>Cheung, C.</creator><creator>Baskaran, M.</creator><creator>Tin Aung</creator><creator>Tien Yin Wong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>MRMR optimized classification for automatic glaucoma diagnosis</title><author>Zhuo Zhang ; Chee Keong Kwoh ; Jiang Liu ; Fengshou Yin ; Wirawan, A. ; Cheung, C. ; Baskaran, M. ; Tin Aung ; Tien Yin Wong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i300t-826f7aa00bf22ebe752a831b333b55569a1145c2b0c3d6a16cbe81098a3c2cc93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>Artificial Intelligence</topic><topic>Automatic Data Processing</topic><topic>Biomedical optical imaging</topic><topic>Databases, Factual</topic><topic>Decision Support Systems, Clinical</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnostic Imaging - methods</topic><topic>Feature extraction</topic><topic>Glaucoma - diagnosis</topic><topic>Glaucoma - pathology</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Ophthalmoscopy - methods</topic><topic>Optical fibers</topic><topic>Optical imaging</topic><topic>Reproducibility of Results</topic><topic>Retina</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhuo Zhang</creatorcontrib><creatorcontrib>Chee Keong Kwoh</creatorcontrib><creatorcontrib>Jiang Liu</creatorcontrib><creatorcontrib>Fengshou Yin</creatorcontrib><creatorcontrib>Wirawan, A.</creatorcontrib><creatorcontrib>Cheung, C.</creatorcontrib><creatorcontrib>Baskaran, M.</creatorcontrib><creatorcontrib>Tin Aung</creatorcontrib><creatorcontrib>Tien Yin Wong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuo Zhang</au><au>Chee Keong Kwoh</au><au>Jiang Liu</au><au>Fengshou Yin</au><au>Wirawan, A.</au><au>Cheung, C.</au><au>Baskaran, M.</au><au>Tin Aung</au><au>Tien Yin Wong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MRMR optimized classification for automatic glaucoma diagnosis</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>6228</spage><epage>6231</epage><pages>6228-6231</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimized classifier is further trained using the candidate feature sets to find the optimized classifier. We tested the proposed methodology on eye records of 650 subjects collected from Singapore Eye Research Institute. The experimental results demonstrate that the new classifier is much compact by using less than ¼ of the initial feature set. The ranked feature set also enables the clinicians to better access the diagnostic process of the algorithm. The work is a further step towards the advancement of the automatic glaucoma diagnosis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22255762</pmid><doi>10.1109/IEMBS.2011.6091538</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6228-6231 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6091538 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Area Under Curve Artificial Intelligence Automatic Data Processing Biomedical optical imaging Databases, Factual Decision Support Systems, Clinical Diagnosis, Computer-Assisted - methods Diagnostic Imaging - methods Feature extraction Glaucoma - diagnosis Glaucoma - pathology Humans Models, Statistical Ophthalmoscopy - methods Optical fibers Optical imaging Reproducibility of Results Retina |
title | MRMR optimized classification for automatic glaucoma diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MRMR%20optimized%20classification%20for%20automatic%20glaucoma%20diagnosis&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Zhuo%20Zhang&rft.date=2011-01-01&rft.volume=2011&rft.spage=6228&rft.epage=6231&rft.pages=6228-6231&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091538&rft_dat=%3Cpubmed_6IE%3E22255762%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22255762&rft_ieee_id=6091538&rfr_iscdi=true |