MRMR optimized classification for automatic glaucoma diagnosis

Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhuo Zhang, Chee Keong Kwoh, Jiang Liu, Fengshou Yin, Wirawan, A., Cheung, C., Baskaran, M., Tin Aung, Tien Yin Wong
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6231
container_issue
container_start_page 6228
container_title
container_volume 2011
creator Zhuo Zhang
Chee Keong Kwoh
Jiang Liu
Fengshou Yin
Wirawan, A.
Cheung, C.
Baskaran, M.
Tin Aung
Tien Yin Wong
description Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimized classifier is further trained using the candidate feature sets to find the optimized classifier. We tested the proposed methodology on eye records of 650 subjects collected from Singapore Eye Research Institute. The experimental results demonstrate that the new classifier is much compact by using less than ¼ of the initial feature set. The ranked feature set also enables the clinicians to better access the diagnostic process of the algorithm. The work is a further step towards the advancement of the automatic glaucoma diagnosis.
doi_str_mv 10.1109/IEMBS.2011.6091538
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6091538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091538</ieee_id><sourcerecordid>22255762</sourcerecordid><originalsourceid>FETCH-LOGICAL-i300t-826f7aa00bf22ebe752a831b333b55569a1145c2b0c3d6a16cbe81098a3c2cc93</originalsourceid><addsrcrecordid>eNo9kN1Kw0AQhdc_bK15AQXJC6TuzP5k90bQUrXQIFQF78ruZlNWmiZ00wt9egNtnZs5w3c4cIaQG6BjAKrvZ9Pi6X2MFGAsqQbB1Am5Ao6cc0CUp2QIQqiMSxBnJNG5OjKA855RzTOp8q8BSWL8pv1IqRnDSzJARCFyiUPyUCyKRdq0XajDry9TtzYxhio404Vmk1bNNjW7rqn706Wrtdm5XqdlMKtNE0O8JheVWUefHPaIfD5PPyav2fztZTZ5nGeBUdplCmWVG0OprRC99blAoxhYxpgVQkhtALhwaKljpTQgnfWqL6AMc-icZiNyt89td7b25bLdhtpsf5bHIr3hdm8I3vt_fHgb-wPQEFli</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MRMR optimized classification for automatic glaucoma diagnosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhuo Zhang ; Chee Keong Kwoh ; Jiang Liu ; Fengshou Yin ; Wirawan, A. ; Cheung, C. ; Baskaran, M. ; Tin Aung ; Tien Yin Wong</creator><creatorcontrib>Zhuo Zhang ; Chee Keong Kwoh ; Jiang Liu ; Fengshou Yin ; Wirawan, A. ; Cheung, C. ; Baskaran, M. ; Tin Aung ; Tien Yin Wong</creatorcontrib><description>Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimized classifier is further trained using the candidate feature sets to find the optimized classifier. We tested the proposed methodology on eye records of 650 subjects collected from Singapore Eye Research Institute. The experimental results demonstrate that the new classifier is much compact by using less than ¼ of the initial feature set. The ranked feature set also enables the clinicians to better access the diagnostic process of the algorithm. The work is a further step towards the advancement of the automatic glaucoma diagnosis.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091538</identifier><identifier>PMID: 22255762</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Area Under Curve ; Artificial Intelligence ; Automatic Data Processing ; Biomedical optical imaging ; Databases, Factual ; Decision Support Systems, Clinical ; Diagnosis, Computer-Assisted - methods ; Diagnostic Imaging - methods ; Feature extraction ; Glaucoma - diagnosis ; Glaucoma - pathology ; Humans ; Models, Statistical ; Ophthalmoscopy - methods ; Optical fibers ; Optical imaging ; Reproducibility of Results ; Retina</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6228-6231</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091538$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091538$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22255762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuo Zhang</creatorcontrib><creatorcontrib>Chee Keong Kwoh</creatorcontrib><creatorcontrib>Jiang Liu</creatorcontrib><creatorcontrib>Fengshou Yin</creatorcontrib><creatorcontrib>Wirawan, A.</creatorcontrib><creatorcontrib>Cheung, C.</creatorcontrib><creatorcontrib>Baskaran, M.</creatorcontrib><creatorcontrib>Tin Aung</creatorcontrib><creatorcontrib>Tien Yin Wong</creatorcontrib><title>MRMR optimized classification for automatic glaucoma diagnosis</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimized classifier is further trained using the candidate feature sets to find the optimized classifier. We tested the proposed methodology on eye records of 650 subjects collected from Singapore Eye Research Institute. The experimental results demonstrate that the new classifier is much compact by using less than ¼ of the initial feature set. The ranked feature set also enables the clinicians to better access the diagnostic process of the algorithm. The work is a further step towards the advancement of the automatic glaucoma diagnosis.</description><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>Artificial Intelligence</subject><subject>Automatic Data Processing</subject><subject>Biomedical optical imaging</subject><subject>Databases, Factual</subject><subject>Decision Support Systems, Clinical</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnostic Imaging - methods</subject><subject>Feature extraction</subject><subject>Glaucoma - diagnosis</subject><subject>Glaucoma - pathology</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Ophthalmoscopy - methods</subject><subject>Optical fibers</subject><subject>Optical imaging</subject><subject>Reproducibility of Results</subject><subject>Retina</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kN1Kw0AQhdc_bK15AQXJC6TuzP5k90bQUrXQIFQF78ruZlNWmiZ00wt9egNtnZs5w3c4cIaQG6BjAKrvZ9Pi6X2MFGAsqQbB1Am5Ao6cc0CUp2QIQqiMSxBnJNG5OjKA855RzTOp8q8BSWL8pv1IqRnDSzJARCFyiUPyUCyKRdq0XajDry9TtzYxhio404Vmk1bNNjW7rqn706Wrtdm5XqdlMKtNE0O8JheVWUefHPaIfD5PPyav2fztZTZ5nGeBUdplCmWVG0OprRC99blAoxhYxpgVQkhtALhwaKljpTQgnfWqL6AMc-icZiNyt89td7b25bLdhtpsf5bHIr3hdm8I3vt_fHgb-wPQEFli</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Zhuo Zhang</creator><creator>Chee Keong Kwoh</creator><creator>Jiang Liu</creator><creator>Fengshou Yin</creator><creator>Wirawan, A.</creator><creator>Cheung, C.</creator><creator>Baskaran, M.</creator><creator>Tin Aung</creator><creator>Tien Yin Wong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>MRMR optimized classification for automatic glaucoma diagnosis</title><author>Zhuo Zhang ; Chee Keong Kwoh ; Jiang Liu ; Fengshou Yin ; Wirawan, A. ; Cheung, C. ; Baskaran, M. ; Tin Aung ; Tien Yin Wong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i300t-826f7aa00bf22ebe752a831b333b55569a1145c2b0c3d6a16cbe81098a3c2cc93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>Artificial Intelligence</topic><topic>Automatic Data Processing</topic><topic>Biomedical optical imaging</topic><topic>Databases, Factual</topic><topic>Decision Support Systems, Clinical</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnostic Imaging - methods</topic><topic>Feature extraction</topic><topic>Glaucoma - diagnosis</topic><topic>Glaucoma - pathology</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Ophthalmoscopy - methods</topic><topic>Optical fibers</topic><topic>Optical imaging</topic><topic>Reproducibility of Results</topic><topic>Retina</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhuo Zhang</creatorcontrib><creatorcontrib>Chee Keong Kwoh</creatorcontrib><creatorcontrib>Jiang Liu</creatorcontrib><creatorcontrib>Fengshou Yin</creatorcontrib><creatorcontrib>Wirawan, A.</creatorcontrib><creatorcontrib>Cheung, C.</creatorcontrib><creatorcontrib>Baskaran, M.</creatorcontrib><creatorcontrib>Tin Aung</creatorcontrib><creatorcontrib>Tien Yin Wong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuo Zhang</au><au>Chee Keong Kwoh</au><au>Jiang Liu</au><au>Fengshou Yin</au><au>Wirawan, A.</au><au>Cheung, C.</au><au>Baskaran, M.</au><au>Tin Aung</au><au>Tien Yin Wong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MRMR optimized classification for automatic glaucoma diagnosis</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>6228</spage><epage>6231</epage><pages>6228-6231</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimized classifier is further trained using the candidate feature sets to find the optimized classifier. We tested the proposed methodology on eye records of 650 subjects collected from Singapore Eye Research Institute. The experimental results demonstrate that the new classifier is much compact by using less than ¼ of the initial feature set. The ranked feature set also enables the clinicians to better access the diagnostic process of the algorithm. The work is a further step towards the advancement of the automatic glaucoma diagnosis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22255762</pmid><doi>10.1109/IEMBS.2011.6091538</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6228-6231
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6091538
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Area Under Curve
Artificial Intelligence
Automatic Data Processing
Biomedical optical imaging
Databases, Factual
Decision Support Systems, Clinical
Diagnosis, Computer-Assisted - methods
Diagnostic Imaging - methods
Feature extraction
Glaucoma - diagnosis
Glaucoma - pathology
Humans
Models, Statistical
Ophthalmoscopy - methods
Optical fibers
Optical imaging
Reproducibility of Results
Retina
title MRMR optimized classification for automatic glaucoma diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MRMR%20optimized%20classification%20for%20automatic%20glaucoma%20diagnosis&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Zhuo%20Zhang&rft.date=2011-01-01&rft.volume=2011&rft.spage=6228&rft.epage=6231&rft.pages=6228-6231&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091538&rft_dat=%3Cpubmed_6IE%3E22255762%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22255762&rft_ieee_id=6091538&rfr_iscdi=true