MRMR optimized classification for automatic glaucoma diagnosis

Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhuo Zhang, Chee Keong Kwoh, Jiang Liu, Fengshou Yin, Wirawan, A., Cheung, C., Baskaran, M., Tin Aung, Tien Yin Wong
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Min-Redundancy Max-Relevance (mRMR) is a feature selection methodology based on information theory. We explore the mRMR principle for automatic glaucoma diagnosis. Optimal candidate feature sets are acquired from a composition of clinical screening data and retinal fundus image data. An mRMR optimized classifier is further trained using the candidate feature sets to find the optimized classifier. We tested the proposed methodology on eye records of 650 subjects collected from Singapore Eye Research Institute. The experimental results demonstrate that the new classifier is much compact by using less than ¼ of the initial feature set. The ranked feature set also enables the clinicians to better access the diagnostic process of the algorithm. The work is a further step towards the advancement of the automatic glaucoma diagnosis.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/IEMBS.2011.6091538