Characterization of entropy measures against data loss: Application to EEG records

This study is aimed at characterizing three signal entropy measures, Approximate Entropy (ApEn), Sample Entropy (SampEn) and Multiscale Entropy (MSE) over real EEG signals when a number of samples are randomly lost due to, for example, wireless data transmission. The experimental EEG database compri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Roldan, E. M. C., Molina-Pico, A., Cuesta-Frau, D., Martinez, P. M., Crespo, S. O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6113
container_issue
container_start_page 6110
container_title
container_volume 2011
creator Roldan, E. M. C.
Molina-Pico, A.
Cuesta-Frau, D.
Martinez, P. M.
Crespo, S. O.
description This study is aimed at characterizing three signal entropy measures, Approximate Entropy (ApEn), Sample Entropy (SampEn) and Multiscale Entropy (MSE) over real EEG signals when a number of samples are randomly lost due to, for example, wireless data transmission. The experimental EEG database comprises two main signal groups: control EEGs and epileptic EEGs. Results show that both SampEn and ApEn enable a clear distinction between control and epileptic signals, but SampEn shows a more robust performance over a wide range of sample loss ratios. MSE exhibits a poor behavior for ratios over a 40% of sample loss. The EEG non-stationary and random trends are kept even when a great number of samples are discarded. This behavior is similar for all the records within the same group.
doi_str_mv 10.1109/IEMBS.2011.6091509
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6091509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091509</ieee_id><sourcerecordid>22255733</sourcerecordid><originalsourceid>FETCH-LOGICAL-i268t-53735c81e9a0cec25dab5a3be239eb807f0561eb9eac11579bae20a4149eb8a73</originalsourceid><addsrcrecordid>eNo9kNtOwkAQhtdTBJEX0MTsCxR39tSud0gqkmBMPCTekWk76BqgzW65wKcXAzg3c_F9_yTzM3YFYgAg3O0kf7p_HUgBMLDCgRHuiF2AllprkNIesy4YkyXagjlhfZdmBwZwumXC6cRm6UeH9WP8Ftux1iklz1lHSmlMqlSXvYy-MGDZUvA_2Pp6xes5p1Ub6mbDl4RxHShy_ES_ii2vsEW-qGO848OmWfhyF2lrnudjHqisQxUv2dkcF5H6-91j7w_52-gxmT6PJ6PhNPHSZm1iVKpMmQE5FCWV0lRYGFQFSeWoyEQ6F8YCFY6wBDCpK5CkQA36D2Oqeuxmd7dZF0uqZk3wSwyb2eG5rXC9EzwR_eN9leoXazdhEQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Characterization of entropy measures against data loss: Application to EEG records</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Roldan, E. M. C. ; Molina-Pico, A. ; Cuesta-Frau, D. ; Martinez, P. M. ; Crespo, S. O.</creator><creatorcontrib>Roldan, E. M. C. ; Molina-Pico, A. ; Cuesta-Frau, D. ; Martinez, P. M. ; Crespo, S. O.</creatorcontrib><description>This study is aimed at characterizing three signal entropy measures, Approximate Entropy (ApEn), Sample Entropy (SampEn) and Multiscale Entropy (MSE) over real EEG signals when a number of samples are randomly lost due to, for example, wireless data transmission. The experimental EEG database comprises two main signal groups: control EEGs and epileptic EEGs. Results show that both SampEn and ApEn enable a clear distinction between control and epileptic signals, but SampEn shows a more robust performance over a wide range of sample loss ratios. MSE exhibits a poor behavior for ratios over a 40% of sample loss. The EEG non-stationary and random trends are kept even when a great number of samples are discarded. This behavior is similar for all the records within the same group.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091509</identifier><identifier>PMID: 22255733</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Complexity theory ; Electroencephalography ; Electroencephalography - methods ; Entropy ; Humans ; Information Storage and Retrieval - methods ; Loss measurement ; Physiology ; Reproducibility of Results ; Robustness ; Seizures - diagnosis ; Sensitivity and Specificity</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6110-6113</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22255733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roldan, E. M. C.</creatorcontrib><creatorcontrib>Molina-Pico, A.</creatorcontrib><creatorcontrib>Cuesta-Frau, D.</creatorcontrib><creatorcontrib>Martinez, P. M.</creatorcontrib><creatorcontrib>Crespo, S. O.</creatorcontrib><title>Characterization of entropy measures against data loss: Application to EEG records</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>This study is aimed at characterizing three signal entropy measures, Approximate Entropy (ApEn), Sample Entropy (SampEn) and Multiscale Entropy (MSE) over real EEG signals when a number of samples are randomly lost due to, for example, wireless data transmission. The experimental EEG database comprises two main signal groups: control EEGs and epileptic EEGs. Results show that both SampEn and ApEn enable a clear distinction between control and epileptic signals, but SampEn shows a more robust performance over a wide range of sample loss ratios. MSE exhibits a poor behavior for ratios over a 40% of sample loss. The EEG non-stationary and random trends are kept even when a great number of samples are discarded. This behavior is similar for all the records within the same group.</description><subject>Algorithms</subject><subject>Complexity theory</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Entropy</subject><subject>Humans</subject><subject>Information Storage and Retrieval - methods</subject><subject>Loss measurement</subject><subject>Physiology</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Seizures - diagnosis</subject><subject>Sensitivity and Specificity</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kNtOwkAQhtdTBJEX0MTsCxR39tSud0gqkmBMPCTekWk76BqgzW65wKcXAzg3c_F9_yTzM3YFYgAg3O0kf7p_HUgBMLDCgRHuiF2AllprkNIesy4YkyXagjlhfZdmBwZwumXC6cRm6UeH9WP8Ftux1iklz1lHSmlMqlSXvYy-MGDZUvA_2Pp6xes5p1Ub6mbDl4RxHShy_ES_ii2vsEW-qGO848OmWfhyF2lrnudjHqisQxUv2dkcF5H6-91j7w_52-gxmT6PJ6PhNPHSZm1iVKpMmQE5FCWV0lRYGFQFSeWoyEQ6F8YCFY6wBDCpK5CkQA36D2Oqeuxmd7dZF0uqZk3wSwyb2eG5rXC9EzwR_eN9leoXazdhEQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Roldan, E. M. C.</creator><creator>Molina-Pico, A.</creator><creator>Cuesta-Frau, D.</creator><creator>Martinez, P. M.</creator><creator>Crespo, S. O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Characterization of entropy measures against data loss: Application to EEG records</title><author>Roldan, E. M. C. ; Molina-Pico, A. ; Cuesta-Frau, D. ; Martinez, P. M. ; Crespo, S. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i268t-53735c81e9a0cec25dab5a3be239eb807f0561eb9eac11579bae20a4149eb8a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Complexity theory</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Entropy</topic><topic>Humans</topic><topic>Information Storage and Retrieval - methods</topic><topic>Loss measurement</topic><topic>Physiology</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Seizures - diagnosis</topic><topic>Sensitivity and Specificity</topic><toplevel>online_resources</toplevel><creatorcontrib>Roldan, E. M. C.</creatorcontrib><creatorcontrib>Molina-Pico, A.</creatorcontrib><creatorcontrib>Cuesta-Frau, D.</creatorcontrib><creatorcontrib>Martinez, P. M.</creatorcontrib><creatorcontrib>Crespo, S. O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roldan, E. M. C.</au><au>Molina-Pico, A.</au><au>Cuesta-Frau, D.</au><au>Martinez, P. M.</au><au>Crespo, S. O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Characterization of entropy measures against data loss: Application to EEG records</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>6110</spage><epage>6113</epage><pages>6110-6113</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>This study is aimed at characterizing three signal entropy measures, Approximate Entropy (ApEn), Sample Entropy (SampEn) and Multiscale Entropy (MSE) over real EEG signals when a number of samples are randomly lost due to, for example, wireless data transmission. The experimental EEG database comprises two main signal groups: control EEGs and epileptic EEGs. Results show that both SampEn and ApEn enable a clear distinction between control and epileptic signals, but SampEn shows a more robust performance over a wide range of sample loss ratios. MSE exhibits a poor behavior for ratios over a 40% of sample loss. The EEG non-stationary and random trends are kept even when a great number of samples are discarded. This behavior is similar for all the records within the same group.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22255733</pmid><doi>10.1109/IEMBS.2011.6091509</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6110-6113
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6091509
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Complexity theory
Electroencephalography
Electroencephalography - methods
Entropy
Humans
Information Storage and Retrieval - methods
Loss measurement
Physiology
Reproducibility of Results
Robustness
Seizures - diagnosis
Sensitivity and Specificity
title Characterization of entropy measures against data loss: Application to EEG records
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Characterization%20of%20entropy%20measures%20against%20data%20loss:%20Application%20to%20EEG%20records&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Roldan,%20E.%20M.%20C.&rft.date=2011-01-01&rft.volume=2011&rft.spage=6110&rft.epage=6113&rft.pages=6110-6113&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091509&rft_dat=%3Cpubmed_6IE%3E22255733%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22255733&rft_ieee_id=6091509&rfr_iscdi=true