Characterization of entropy measures against data loss: Application to EEG records
This study is aimed at characterizing three signal entropy measures, Approximate Entropy (ApEn), Sample Entropy (SampEn) and Multiscale Entropy (MSE) over real EEG signals when a number of samples are randomly lost due to, for example, wireless data transmission. The experimental EEG database compri...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study is aimed at characterizing three signal entropy measures, Approximate Entropy (ApEn), Sample Entropy (SampEn) and Multiscale Entropy (MSE) over real EEG signals when a number of samples are randomly lost due to, for example, wireless data transmission. The experimental EEG database comprises two main signal groups: control EEGs and epileptic EEGs. Results show that both SampEn and ApEn enable a clear distinction between control and epileptic signals, but SampEn shows a more robust performance over a wide range of sample loss ratios. MSE exhibits a poor behavior for ratios over a 40% of sample loss. The EEG non-stationary and random trends are kept even when a great number of samples are discarded. This behavior is similar for all the records within the same group. |
---|---|
ISSN: | 1094-687X 1557-170X 1558-4615 |
DOI: | 10.1109/IEMBS.2011.6091509 |