Classification of hand posture from electrocorticographic signals recorded during varying force conditions

In the presented work, standard and high-density electrocorticographic (ECoG) electrodes were used to record cortical field potentials in three human subjects during a hand posture task requiring the application of specific levels of force during grasping. We show two-class classification accuracies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011-01, Vol.2011, p.5782-5785
Hauptverfasser: Degenhart, A. D., Collinger, J. L., Vinjamuri, R., Kelly, J. W., Tyler-Kabara, E. C., Wei Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5785
container_issue
container_start_page 5782
container_title 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume 2011
creator Degenhart, A. D.
Collinger, J. L.
Vinjamuri, R.
Kelly, J. W.
Tyler-Kabara, E. C.
Wei Wang
description In the presented work, standard and high-density electrocorticographic (ECoG) electrodes were used to record cortical field potentials in three human subjects during a hand posture task requiring the application of specific levels of force during grasping. We show two-class classification accuracies of up to 80% are obtained when classifying between two-finger pinch and whole-hand grasp hand postures despite differences in applied force levels across trials. Furthermore, we show that a four-class classification accuracy of 50% is achieved when predicting both hand posture and force level during a two-force, two-hand-posture grasping task, with hand posture most reliably predicted during high-force trials. These results suggest that the application of force plays a significant role in ECoG signal modulation observed during motor tasks, emphasizing the potential for electrocorticography to serve as a source of control signals for dexterous neuroprosthetic devices.
doi_str_mv 10.1109/IEMBS.2011.6091431
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6091431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091431</ieee_id><sourcerecordid>22255654</sourcerecordid><originalsourceid>FETCH-LOGICAL-i366t-e6d53b731b065b35d9a8cdc32ca669ae7e6da4605d1fe8f321357262165a7cab3</originalsourceid><addsrcrecordid>eNo9kNtOAjEQhuspgsgLaGL6Aoudnnb3UggqCcYLNfGOdNsulMB20y4mvr0lgHPzX3xf_swMQndARgCkfJxN38YfI0oARpKUwBmcoRvglHMOlMpz1AchioxLEBdoWObFiQFcJkZKnski_-6hYYxrkkbKkjF6jXqUUiGk4H20nmxUjK52WnXON9jXeKUag1sfu12wuA5-i-3G6i547UPntF8G1a6cxtEtG7WJONgEjDXY7IJrlvhHhd991j5oi7VvjNtXx1t0VSffDo85QF_P08_JazZ_f5lNnuaZY1J2mZVGsCpnUBEpKiZMqQptNKNapf2VzZOguCTCQG2LmlFgIqeSghQq16piA_Rw6G131daaRRvcNq20OB2dhPuD4Ky1__j4YvYHeB9rJw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classification of hand posture from electrocorticographic signals recorded during varying force conditions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Degenhart, A. D. ; Collinger, J. L. ; Vinjamuri, R. ; Kelly, J. W. ; Tyler-Kabara, E. C. ; Wei Wang</creator><creatorcontrib>Degenhart, A. D. ; Collinger, J. L. ; Vinjamuri, R. ; Kelly, J. W. ; Tyler-Kabara, E. C. ; Wei Wang</creatorcontrib><description>In the presented work, standard and high-density electrocorticographic (ECoG) electrodes were used to record cortical field potentials in three human subjects during a hand posture task requiring the application of specific levels of force during grasping. We show two-class classification accuracies of up to 80% are obtained when classifying between two-finger pinch and whole-hand grasp hand postures despite differences in applied force levels across trials. Furthermore, we show that a four-class classification accuracy of 50% is achieved when predicting both hand posture and force level during a two-force, two-hand-posture grasping task, with hand posture most reliably predicted during high-force trials. These results suggest that the application of force plays a significant role in ECoG signal modulation observed during motor tasks, emphasizing the potential for electrocorticography to serve as a source of control signals for dexterous neuroprosthetic devices.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091431</identifier><identifier>PMID: 22255654</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Electrodes ; Electroencephalography - methods ; Force ; Hand - physiology ; Hand Strength - physiology ; Humans ; Modulation ; Motor Cortex - physiology ; Muscle Contraction - physiology ; Muscle Strength - physiology ; Muscle, Skeletal - physiology ; Physical Exertion - physiology ; Posture - physiology ; Prosthetics ; Reproducibility of Results ; Sensitivity and Specificity ; Time frequency analysis</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011-01, Vol.2011, p.5782-5785</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091431$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22255654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Degenhart, A. D.</creatorcontrib><creatorcontrib>Collinger, J. L.</creatorcontrib><creatorcontrib>Vinjamuri, R.</creatorcontrib><creatorcontrib>Kelly, J. W.</creatorcontrib><creatorcontrib>Tyler-Kabara, E. C.</creatorcontrib><creatorcontrib>Wei Wang</creatorcontrib><title>Classification of hand posture from electrocorticographic signals recorded during varying force conditions</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Annu Int Conf IEEE Eng Med Biol Soc</addtitle><description>In the presented work, standard and high-density electrocorticographic (ECoG) electrodes were used to record cortical field potentials in three human subjects during a hand posture task requiring the application of specific levels of force during grasping. We show two-class classification accuracies of up to 80% are obtained when classifying between two-finger pinch and whole-hand grasp hand postures despite differences in applied force levels across trials. Furthermore, we show that a four-class classification accuracy of 50% is achieved when predicting both hand posture and force level during a two-force, two-hand-posture grasping task, with hand posture most reliably predicted during high-force trials. These results suggest that the application of force plays a significant role in ECoG signal modulation observed during motor tasks, emphasizing the potential for electrocorticography to serve as a source of control signals for dexterous neuroprosthetic devices.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Electrodes</subject><subject>Electroencephalography - methods</subject><subject>Force</subject><subject>Hand - physiology</subject><subject>Hand Strength - physiology</subject><subject>Humans</subject><subject>Modulation</subject><subject>Motor Cortex - physiology</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Strength - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Physical Exertion - physiology</subject><subject>Posture - physiology</subject><subject>Prosthetics</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Time frequency analysis</subject><issn>1094-687X</issn><issn>1558-4615</issn><issn>2694-0604</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kNtOAjEQhuspgsgLaGL6Aoudnnb3UggqCcYLNfGOdNsulMB20y4mvr0lgHPzX3xf_swMQndARgCkfJxN38YfI0oARpKUwBmcoRvglHMOlMpz1AchioxLEBdoWObFiQFcJkZKnski_-6hYYxrkkbKkjF6jXqUUiGk4H20nmxUjK52WnXON9jXeKUag1sfu12wuA5-i-3G6i547UPntF8G1a6cxtEtG7WJONgEjDXY7IJrlvhHhd991j5oi7VvjNtXx1t0VSffDo85QF_P08_JazZ_f5lNnuaZY1J2mZVGsCpnUBEpKiZMqQptNKNapf2VzZOguCTCQG2LmlFgIqeSghQq16piA_Rw6G131daaRRvcNq20OB2dhPuD4Ky1__j4YvYHeB9rJw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Degenhart, A. D.</creator><creator>Collinger, J. L.</creator><creator>Vinjamuri, R.</creator><creator>Kelly, J. W.</creator><creator>Tyler-Kabara, E. C.</creator><creator>Wei Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Classification of hand posture from electrocorticographic signals recorded during varying force conditions</title><author>Degenhart, A. D. ; Collinger, J. L. ; Vinjamuri, R. ; Kelly, J. W. ; Tyler-Kabara, E. C. ; Wei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i366t-e6d53b731b065b35d9a8cdc32ca669ae7e6da4605d1fe8f321357262165a7cab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Electrodes</topic><topic>Electroencephalography - methods</topic><topic>Force</topic><topic>Hand - physiology</topic><topic>Hand Strength - physiology</topic><topic>Humans</topic><topic>Modulation</topic><topic>Motor Cortex - physiology</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Strength - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Physical Exertion - physiology</topic><topic>Posture - physiology</topic><topic>Prosthetics</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Time frequency analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Degenhart, A. D.</creatorcontrib><creatorcontrib>Collinger, J. L.</creatorcontrib><creatorcontrib>Vinjamuri, R.</creatorcontrib><creatorcontrib>Kelly, J. W.</creatorcontrib><creatorcontrib>Tyler-Kabara, E. C.</creatorcontrib><creatorcontrib>Wei Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Degenhart, A. D.</au><au>Collinger, J. L.</au><au>Vinjamuri, R.</au><au>Kelly, J. W.</au><au>Tyler-Kabara, E. C.</au><au>Wei Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of hand posture from electrocorticographic signals recorded during varying force conditions</atitle><jtitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Annu Int Conf IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>5782</spage><epage>5785</epage><pages>5782-5785</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><eissn>2694-0604</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>In the presented work, standard and high-density electrocorticographic (ECoG) electrodes were used to record cortical field potentials in three human subjects during a hand posture task requiring the application of specific levels of force during grasping. We show two-class classification accuracies of up to 80% are obtained when classifying between two-finger pinch and whole-hand grasp hand postures despite differences in applied force levels across trials. Furthermore, we show that a four-class classification accuracy of 50% is achieved when predicting both hand posture and force level during a two-force, two-hand-posture grasping task, with hand posture most reliably predicted during high-force trials. These results suggest that the application of force plays a significant role in ECoG signal modulation observed during motor tasks, emphasizing the potential for electrocorticography to serve as a source of control signals for dexterous neuroprosthetic devices.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22255654</pmid><doi>10.1109/IEMBS.2011.6091431</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011-01, Vol.2011, p.5782-5785
issn 1094-687X
1558-4615
2694-0604
language eng
recordid cdi_ieee_primary_6091431
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Algorithms
Electrodes
Electroencephalography - methods
Force
Hand - physiology
Hand Strength - physiology
Humans
Modulation
Motor Cortex - physiology
Muscle Contraction - physiology
Muscle Strength - physiology
Muscle, Skeletal - physiology
Physical Exertion - physiology
Posture - physiology
Prosthetics
Reproducibility of Results
Sensitivity and Specificity
Time frequency analysis
title Classification of hand posture from electrocorticographic signals recorded during varying force conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20hand%20posture%20from%20electrocorticographic%20signals%20recorded%20during%20varying%20force%20conditions&rft.jtitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Degenhart,%20A.%20D.&rft.date=2011-01-01&rft.volume=2011&rft.spage=5782&rft.epage=5785&rft.pages=5782-5785&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091431&rft_dat=%3Cpubmed_6IE%3E22255654%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22255654&rft_ieee_id=6091431&rfr_iscdi=true