Classification of hand posture from electrocorticographic signals recorded during varying force conditions
In the presented work, standard and high-density electrocorticographic (ECoG) electrodes were used to record cortical field potentials in three human subjects during a hand posture task requiring the application of specific levels of force during grasping. We show two-class classification accuracies...
Gespeichert in:
Veröffentlicht in: | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011-01, Vol.2011, p.5782-5785 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the presented work, standard and high-density electrocorticographic (ECoG) electrodes were used to record cortical field potentials in three human subjects during a hand posture task requiring the application of specific levels of force during grasping. We show two-class classification accuracies of up to 80% are obtained when classifying between two-finger pinch and whole-hand grasp hand postures despite differences in applied force levels across trials. Furthermore, we show that a four-class classification accuracy of 50% is achieved when predicting both hand posture and force level during a two-force, two-hand-posture grasping task, with hand posture most reliably predicted during high-force trials. These results suggest that the application of force plays a significant role in ECoG signal modulation observed during motor tasks, emphasizing the potential for electrocorticography to serve as a source of control signals for dexterous neuroprosthetic devices. |
---|---|
ISSN: | 1094-687X 1558-4615 2694-0604 |
DOI: | 10.1109/IEMBS.2011.6091431 |