Robotic wheelchair commanded by SSVEP, motor imagery and word generation

This work presents a robotic wheelchair that can be commanded by a Brain Computer Interface (BCI) through Steady-State Visual Evoked Potential (SSVEP), Motor Imagery and Word Generation. When using SSVEP, a statistical test is used to extract the evoked response and a decision tree is used to discri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011-01, Vol.2011, p.4753-4756
Hauptverfasser: Bastos, T. F., Muller, S. M. T., Benevides, A. B., Sarcinelli-Filho, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a robotic wheelchair that can be commanded by a Brain Computer Interface (BCI) through Steady-State Visual Evoked Potential (SSVEP), Motor Imagery and Word Generation. When using SSVEP, a statistical test is used to extract the evoked response and a decision tree is used to discriminate the stimulus frequency, allowing volunteers to online operate the BCI, with hit rates varying from 60% to 100%, and guide a robotic wheelchair through an indoor environment. When using motor imagery and word generation, three mental task are used: imagination of left or right hand, and imagination of generation of words starting with the same random letter. Linear Discriminant Analysis is used to recognize the mental tasks, and the feature extraction uses Power Spectral Density. The choice of EEG channel and frequency uses the Kullback-Leibler symmetric divergence and a reclassification model is proposed to stabilize the classifier.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/IEMBS.2011.6091177