Multisensor data fusion for advanced driver assistance systems - the Active Safety Car project

Driver assistance systems support overstrained and affected drivers and become more and more essential for series-production vehicles. Object detection and segmentation is one of the most challenging research topics in this field. In order to warn the driver or automatically break before a potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gavriilidis, A., Schwerdtfeger, T., Velten, J., Schauland, S., Hohmann, L., Haselhoff, A., Boschen, F., Kummert, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Driver assistance systems support overstrained and affected drivers and become more and more essential for series-production vehicles. Object detection and segmentation is one of the most challenging research topics in this field. In order to warn the driver or automatically break before a potential collision, objects intersecting the path of the host vehicle have to be detected and classified. Most recently developed approaches are based on two dimensional image processing, sometimes in combination with a tracking algorithm associating detections in consecutive frames to one and the same object. Further robustness is achieved by multisensor data fusion, i.e. information by two or more different sensors (e.g. camera and radar data) are fused in order to get a much more reliable result. Another aspect for safety applications is communication between cars, which provides additional sensor locations and thus also requires data fusion technology. Two different approaches for data fusion are proposed and first results are presented.
DOI:10.1109/nDS.2011.6076836