Bayesian Approach to Photo Time-Stamp Recognition

Time-stamps and URLs overlaid artificially on images add useful meta information which can be used for automatic indexing of images and videos. In this paper, we propose a method based on an attention-based model of visual saliency to extract overlaid text and time-stamps that are rendered on images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shahab, A., Shafait, F., Dengel, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1043
container_issue
container_start_page 1039
container_title
container_volume
creator Shahab, A.
Shafait, F.
Dengel, A.
description Time-stamps and URLs overlaid artificially on images add useful meta information which can be used for automatic indexing of images and videos. In this paper, we propose a method based on an attention-based model of visual saliency to extract overlaid text and time-stamps that are rendered on images. Our model of visual saliency is based on a Bayesian framework and works very well for the task of time-stamp detection and segmentation as is evident by overall object recall of 80% and precision of 70%. Our method produces a clean text segmented binarized image, which can be used for recognition directly by an OCR system. Furthermore, our technique is robust against variation of font styles and color of time-stamp and overlaid text.
doi_str_mv 10.1109/ICDAR.2011.210
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6065468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6065468</ieee_id><sourcerecordid>6065468</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-768934fb81299f598b1bfe9c94e1c527b4c1dc726a71a8fa4ab879c82fa0d5493</originalsourceid><addsrcrecordid>eNotjMlOwzAURc0kEUq2bNjkBxz8PL9laBkqVQKVsq4c16ZGZFCSTf-eSHAX52yOLiF3wEoAhg_r5aralpwBlBzYGcnRWGY0Kqk44-ck48Ig5SDZBbkBqYwBoRi7JBnMAVVCi2uSj-M3m6c1goKMwKM7hTG5tqj6fuicPxZTV7wfu5m71AT6MbmmL7bBd19tmlLX3pKr6H7GkP97QT6fn3bLV7p5e1kvqw1NYNREjbYoZKwtcMSo0NZQx4AeZQCvuKmlh4M3XDsDzkYnXW0NesujYwclUSzI_d9vCiHs-yE1bjjtNdNKait-AcRYR4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian Approach to Photo Time-Stamp Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shahab, A. ; Shafait, F. ; Dengel, A.</creator><creatorcontrib>Shahab, A. ; Shafait, F. ; Dengel, A.</creatorcontrib><description>Time-stamps and URLs overlaid artificially on images add useful meta information which can be used for automatic indexing of images and videos. In this paper, we propose a method based on an attention-based model of visual saliency to extract overlaid text and time-stamps that are rendered on images. Our model of visual saliency is based on a Bayesian framework and works very well for the task of time-stamp detection and segmentation as is evident by overall object recall of 80% and precision of 70%. Our method produces a clean text segmented binarized image, which can be used for recognition directly by an OCR system. Furthermore, our technique is robust against variation of font styles and color of time-stamp and overlaid text.</description><identifier>ISSN: 1520-5363</identifier><identifier>ISBN: 1457713500</identifier><identifier>ISBN: 9781457713507</identifier><identifier>EISSN: 2379-2140</identifier><identifier>EISBN: 9780769545202</identifier><identifier>EISBN: 0769545203</identifier><identifier>DOI: 10.1109/ICDAR.2011.210</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Bayesian model for text detection ; Image color analysis ; Image recognition ; Image segmentation ; Optical character recognition software ; overlaid text detection/recognition ; photo time-stamp detection/recognition ; Text recognition ; visual saliency ; Visualization</subject><ispartof>2011 International Conference on Document Analysis and Recognition, 2011, p.1039-1043</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6065468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6065468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shahab, A.</creatorcontrib><creatorcontrib>Shafait, F.</creatorcontrib><creatorcontrib>Dengel, A.</creatorcontrib><title>Bayesian Approach to Photo Time-Stamp Recognition</title><title>2011 International Conference on Document Analysis and Recognition</title><addtitle>icdar</addtitle><description>Time-stamps and URLs overlaid artificially on images add useful meta information which can be used for automatic indexing of images and videos. In this paper, we propose a method based on an attention-based model of visual saliency to extract overlaid text and time-stamps that are rendered on images. Our model of visual saliency is based on a Bayesian framework and works very well for the task of time-stamp detection and segmentation as is evident by overall object recall of 80% and precision of 70%. Our method produces a clean text segmented binarized image, which can be used for recognition directly by an OCR system. Furthermore, our technique is robust against variation of font styles and color of time-stamp and overlaid text.</description><subject>Bayesian methods</subject><subject>Bayesian model for text detection</subject><subject>Image color analysis</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Optical character recognition software</subject><subject>overlaid text detection/recognition</subject><subject>photo time-stamp detection/recognition</subject><subject>Text recognition</subject><subject>visual saliency</subject><subject>Visualization</subject><issn>1520-5363</issn><issn>2379-2140</issn><isbn>1457713500</isbn><isbn>9781457713507</isbn><isbn>9780769545202</isbn><isbn>0769545203</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMlOwzAURc0kEUq2bNjkBxz8PL9laBkqVQKVsq4c16ZGZFCSTf-eSHAX52yOLiF3wEoAhg_r5aralpwBlBzYGcnRWGY0Kqk44-ck48Ig5SDZBbkBqYwBoRi7JBnMAVVCi2uSj-M3m6c1goKMwKM7hTG5tqj6fuicPxZTV7wfu5m71AT6MbmmL7bBd19tmlLX3pKr6H7GkP97QT6fn3bLV7p5e1kvqw1NYNREjbYoZKwtcMSo0NZQx4AeZQCvuKmlh4M3XDsDzkYnXW0NesujYwclUSzI_d9vCiHs-yE1bjjtNdNKait-AcRYR4Q</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Shahab, A.</creator><creator>Shafait, F.</creator><creator>Dengel, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Bayesian Approach to Photo Time-Stamp Recognition</title><author>Shahab, A. ; Shafait, F. ; Dengel, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-768934fb81299f598b1bfe9c94e1c527b4c1dc726a71a8fa4ab879c82fa0d5493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian methods</topic><topic>Bayesian model for text detection</topic><topic>Image color analysis</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Optical character recognition software</topic><topic>overlaid text detection/recognition</topic><topic>photo time-stamp detection/recognition</topic><topic>Text recognition</topic><topic>visual saliency</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Shahab, A.</creatorcontrib><creatorcontrib>Shafait, F.</creatorcontrib><creatorcontrib>Dengel, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shahab, A.</au><au>Shafait, F.</au><au>Dengel, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian Approach to Photo Time-Stamp Recognition</atitle><btitle>2011 International Conference on Document Analysis and Recognition</btitle><stitle>icdar</stitle><date>2011-09</date><risdate>2011</risdate><spage>1039</spage><epage>1043</epage><pages>1039-1043</pages><issn>1520-5363</issn><eissn>2379-2140</eissn><isbn>1457713500</isbn><isbn>9781457713507</isbn><eisbn>9780769545202</eisbn><eisbn>0769545203</eisbn><abstract>Time-stamps and URLs overlaid artificially on images add useful meta information which can be used for automatic indexing of images and videos. In this paper, we propose a method based on an attention-based model of visual saliency to extract overlaid text and time-stamps that are rendered on images. Our model of visual saliency is based on a Bayesian framework and works very well for the task of time-stamp detection and segmentation as is evident by overall object recall of 80% and precision of 70%. Our method produces a clean text segmented binarized image, which can be used for recognition directly by an OCR system. Furthermore, our technique is robust against variation of font styles and color of time-stamp and overlaid text.</abstract><pub>IEEE</pub><doi>10.1109/ICDAR.2011.210</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-5363
ispartof 2011 International Conference on Document Analysis and Recognition, 2011, p.1039-1043
issn 1520-5363
2379-2140
language eng
recordid cdi_ieee_primary_6065468
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Bayesian model for text detection
Image color analysis
Image recognition
Image segmentation
Optical character recognition software
overlaid text detection/recognition
photo time-stamp detection/recognition
Text recognition
visual saliency
Visualization
title Bayesian Approach to Photo Time-Stamp Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20Approach%20to%20Photo%20Time-Stamp%20Recognition&rft.btitle=2011%20International%20Conference%20on%20Document%20Analysis%20and%20Recognition&rft.au=Shahab,%20A.&rft.date=2011-09&rft.spage=1039&rft.epage=1043&rft.pages=1039-1043&rft.issn=1520-5363&rft.eissn=2379-2140&rft.isbn=1457713500&rft.isbn_list=9781457713507&rft_id=info:doi/10.1109/ICDAR.2011.210&rft_dat=%3Cieee_6IE%3E6065468%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769545202&rft.eisbn_list=0769545203&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6065468&rfr_iscdi=true